A SYSTEMATIC REVIEW OF VISUAL ATTENTION, RIDER RISK-TAKING, AND INJURY MECHANISMS IN ELECTRIC SCOOTER USE

eSCURB: Electric scooters in urban environments: A study of safety, infrastructure, and mobility dynamics

 $\label{thm:project leader from Slovenia partner: Asst.\ Prof.\ Tina\ Cvahte\ Ojster\\ \check{s}ek,\ Ph.D.$

Project leader from Croatian partner: Asst. Prof. Dario Babić, Ph.D.

Project team:

Faculty of Logistics, University of Maribor:
Tina Cvahte Ojsteršek
Darja Topolšek
Simona Šinko
Lazar Pavić
Pija Soršak
Marjan Sternad
Uroš Kramar
Tomaž Kramberger
Martin Fras
Mateja Forte

Faculty of Criminal Justice and Security, University of Maribor: Igor Areh

Faculty of Transport and Traffic Sciences, University of Zagreb:
Dario Babić
Darko Babić
Mario Fiolić
Shirin Rizehbandi

This project is cofinanced by the Slovenian Research and Innovation Agency and Croatian Science Foundation as part of the Lead Agency Multilateral Scheme (Weave) Agreement, an EU-wide initiative for the (co)funding of fundamental research projects.

TABLE OF CONTENTS

1		RODUCTION	
2	ME	THODOLOGY	7
3	RES	ULTS	8
	3.1	SEX AND AGE DEMOGRAPHICS	8
	3.2	HELMET USAGE	8
	3.3	ALCOHOL AND DRUG USE	9
	3.4	Underage Riding	10
	3.5	INEXPERIENCED RIDING AND E-SCOOTER-RELATED INJURIES	11
	3.6	Speeding	12
	3.7	RIDER DISTRACTION	17
	3.8	INFRASTRUCTURE-RELATED CHALLENGES	17
	3.9	POLICY-RELATED CHALLENGES	22
	3.10	E-SCOOTER RELIABILITY	25
	3.11	PATTERNS OF INJURY	25
	a)	Severity	25
	b)	Motor vehicle collisions	25
	c)	Injuries and deaths of Pedestrians and Bicyclists in connection with e-scooters	26
	d)	Anatomical places of Injury	26
	e)	Types of injuries	27
	3.12	E-SCOOTER CRASH TRENDS AND FATALITIES	27
	3.13	GAZE BEHAVIOUR	34
4	DIS	CUSSION AND CONCLUSION	36
	4.1	RESEARCH GAPS AND FUTURE DIRECTIONS	37
	4.2	LIMITATIONS	38
RE	FEREN	PES	40

ABSTARCT

The rapid increase in electric scooter usage worldwide has introduced recent safety issues to urban areas. This systematic review combines research about rider behavior, gaze behavior, and injury mechanisms. The PRISMA guidelines led to the discovery of 647 articles through database searches in eight major databases. The researchers selected 168 studies for complete evaluation following their screening process. The review examines risky behaviors, including age and gender, helmet use, substance consumption, speeding, distraction, and visibility, to understand their impact on accidents and injuries. The research indicates that young male riders experience the highest rate of crashes while helmet usage remains extremely rare. The combination of alcohol and drugs leads to severe head and facial injuries. The combination of dangerous road conditions with low visibility and faulty scooter designs creates additional injury risks. Most e-scooter riders remain unaware of the specific regulations that govern their use in their area. The review demonstrates that safety regulations, rider training, and scooter design improvements are essential.

Keywords: Human behaviour, E-scooter safety, Visual attention, Micro-mobility, Electric scooters

1 INTRODUCTION

Over the past decade, sustainable, electric-powered micro-mobility solutions have increased globally (Cubell Miralles-Guasch, & Marquet, 2023; Gao & Zhang, 2024;). Electric scooters (escooters) have especially come into their own, becoming an essential part of the urban transportation networks around the world (Useche, Gonzalez-Marin, Faus and Alonso, 2022a, b). Cubells, Miralles-Guasch, and Marquet (2023) attribute their rise in popularity, availability, and visibility to the inception of e-scooter sharing services that started in Santa Monica, California in September 2017 (Yang et al., 2020). E-scooters are primarily used for point-to-point travel and are particularly important in enhancing the sustainability of transportation systems (Kopplin, Brand, & Reichenberger, 2021). They help with traffic congestion, emission of greenhouse gases, and accessibility, particularly in areas with poor infrastructure (Zou, Younes, Erdoğan, & Wu, 2020). However, incorporating e-scooters in cities has brought about several problems due to their safety issues. Many cities around the world have encountered adverse effects arising from shared or private e-scooter programs, for instance, minor injuries resulting from falls, crashes, or interactions with other pedestrians or cyclists in the shared path and problems incidence in linking to improperly parked scooters that cause obstruction and clutter on the sidewalks (Traynor et al., 2022).

In safety issues, human behaviour is critical, and riders tend to participate in risky behaviour like forbidden riding and thoughtless parking, which puts them and other road users in danger (Haworth et al., 2024; Kazemzadeh et al., 2023; Ventsislavova et al., 2024). Furthermore, some design features of the e-scooters themselves present safety risks, for instance, the rider has to balance himself on a small deck, use small wheels, and control high speeds (Janikian et al., 2024; Tischler et al., 2023). These problems are significantly worsened by poor urban infrastructure and the absence of proper policies and regulations for using e-scooters and their parking (Niemann et al., 2023; Serra et al., 2021).

Although e-scooters are fun and convenient, their use has met some resistance from residents, drivers, pedestrians, and cyclists. A lot of people feel that e-scooters are annoying, dangerous, and intrusive (Carville, 2018). The sudden appearance of e-scooter services in cities like Santa Monica, San Francisco, Brussels, and Paris has not met with the approval of either the

public or the authorities (Notopoulus, 2018). An online survey of 7,000 people in 11 large U.S. cities indicated that approximately 30 percent had a negative perception of e-scooters (Clewlow, 2019). The most significant grievances are riding erratically, not wearing a helmet, and e-scooters being left blocking access to buildings, transit stations, and sidewalks (Carville, 2018; Fang et al., 2018; James et al., 2019; Maiti et al., 2022; Notopoulus, 2018).

Governments debate the appropriateness of the regulations for e-scooters. They are not sure if e-scooters should be regulated like motorized vehicles, bicycles, or pedestrians, and what should be the rules for different public spaces (NACTO, 2019; Notopoulus, 2018). In most areas, e-scooters are not permitted on the sidewalk, but in some places, they are. The odds are better on the road, but an e-scooter rider might get hit by a car (Dhillon et al., 2020). Services like e-scooter sharing have become a topic of discussion for regulation or even ban in cities like New York, Montreal, London, and many others because of these reasons (Bekhit et al., 2020; Sikka et al., 2019; Yang et al., 2020).

In addition, the current paper reveals that many riders are not familiar with the local escooter regulations, which is a safety and compliance issue. For instance, in Berlin, many riders were not aware of the rules that govern riding two people, against the traffic flow, areas which are allowed for riding, whether a license is required for the driver, and the use of hand signals (ITF, 2020). This knowledge gap has to be addressed and possibly re-examined by governments when deciding on the rules for using e-scooters because of unplanned service introductions, disturbing behaviours, and increasing safety risks.

In response to the challenges introduced by e-scooters, several authorities have initiated trial programs to assess the viability of these transport schemes. Such evaluations prioritize safety and aim to refine regulations before allowing broader adoption (Kamphuis & Schagen, 2020; Leyendecker et al., 2023). Efforts to address safety concerns have included reducing the maximum speeds of e-scooters to decrease the speed difference between e-scooters and pedestrians and introducing dual braking systems to enhance stability. However, there is still a significant gap in research concerning the effectiveness of these interventions. With the fast pace of innovation in the micro-mobility sector, continuous evaluation and updates are essential to learn from previous experiences and guide future policy and operational strategies to ensure e-

scooter usage is safe and responsible. This review incorporates findings from academic research and grey literature, including direct communications from e-scooter providers, technical reports, and government policy documents, to compensate for the scarcity of formalized recent studies. Overall, this paper aims at further exploring the different aspects of e-scooter rider risk taking behaviours in order to provide important information that can be used by policymakers when deciding on where to focus more on safety.

2 METHODOLOGY

The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (Page et al., 2021) were followed for the review. The main systematic search was done on January 13, 2025. It used databases like Google Scholar, Scopus, Web of Science, EBSCO, ProQuest, TRID, APA, and PMS. This search found 647 article records. These were found by looking for a mix of keywords in the titles and abstracts: ("E-scooter" OR "electric scooter") AND ("risk" OR "risky" OR "road" OR "injury" OR "safety" OR "accident" OR "behaviour" OR "behaviour" OR "behaviour") AND ("eye-tracking" OR "gaze" OR "gaze behaviour" OR "gaze behaviour"). Error! R eference source not found. shows the search process. The search procedures followed consistent criteria and keyword combinations across all databases.

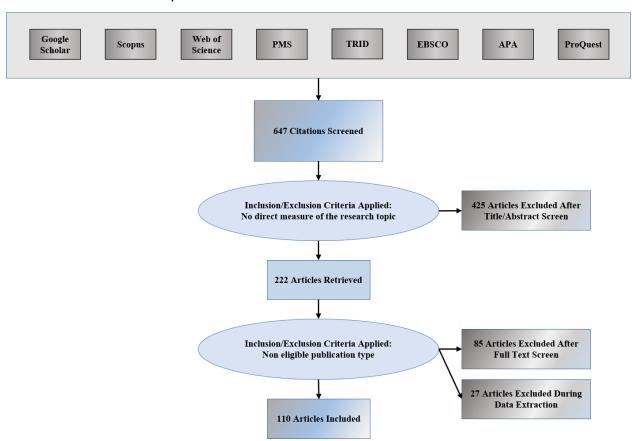


Figure 1. PRISMA flow diagram for systematic review of e-scooter human behaviour

3 RESULTS

Risky behaviour was classified by following factors: sex and age, helmet use, alcohol and/or drug use, age limit, speed, rider's distraction, and rider's visibility.

3.1 Sex and age demographics

The analysis of socio-demographic factors in e-scooter usage helps to reveal the potential of users and, therefore, to develop strategies for safety management. According to the literature, gender and age are the determinants of user behaviours. Stereotypes state that male riders are more risk-taking than female riders (Anderson et al. 2021, Dhillon et al. 2020, Kobayashi et al. 2019). The percentage of male riders has always been higher than 50% in all the e-scooter injury studies, which could be because male riders are more likely to engage in risky behaviour (Azimian & Jiao, 2022; ITF, 2020; Sexton et al., 2023). However, the study conducted by the International Transport Forum shows that the injury and crash behaviours of male and female e-scooter riders are the same although they have different tendencies in using the e-scooters (ITF, 2024). Nevertheless, the females were involved in more severe and fatal crashes than the males, and they tended to attribute the accident to losing balance more than the male riders (ITF, 2020). In addition, females highlighted issues with safety, for instance, concern with hitting other people or being hit, falling, and lack of control. Research shows that, compared to their male counterparts, females are more likely to believe that the use of e-scooters is riskier, which could be why they use e-scooters less frequently (Useche et al., 2022). Furthermore, E-scooters are very popular among young adults, which might explain why they use them so much. Research indicates that those between 18 and 44 years old are often involved in crashes (Moftakhar et al., 2020). This might be because they're not experienced with e-scooters and easily get distracted by their phones, doing things like reading texts while riding, just as they do when driving or cycling.

3.2 Helmet usage

The situation with the high rates of head injuries among e-scooter riders requires a closer examination of the practices regarding the use of helmets. The International Transport Forum (2024) has reported that e-scooter riders are admitted to medical facilities with head and neck injuries more often than bike riders. However, since helmets can significantly reduce the severity

of injuries, less than 3% of the e-scooter riders use them (Sexton et al., 2023). The survey results may not always be consistent with the findings; for instance, 20% of the riders in Portland claim to use helmets all the time, while 10% use them sometimes (Portland Bureau of Transportation & Alta Planning & Design, 2020). According to Young (2019), 80% of people in Baltimore have never worn a helmet. Only 2% of Tucson and Salt Lake City riders were observed to be using helmets (Currans et al., 2022).

Although moderate to severe head injuries are common among e-scooter riders, and research has shown that helmet use leads to better safety outcomes for riders of other micromobility devices, helmet usage is relatively low. For instance, in Western Australia, only 43% of those injured while riding an e-scooter wore a helmet (Raubenheimer et al., 2023). In Australia, every e-scooter rider must wear an approved bicycle helmet and not wearing one can attract a fine of at least AUD 143 (Queensland Government, 2023). However, in several regions of the world, helmet use among injured e-scooter riders is still relatively low, even when strict rules and penalties are in place (Haworth et al. 2024, ITF 2024). It is important to understand factors determining whether e-scooter riders wear helmets as this may help to know how to encourage better riding practices. In Canberra, where a helmet is mandatory, people do not always wear one depending on the context, as happens with bicycle helmets (Haworth, Ssi Yan Kai, & Schramm, 2024). Furthermore, a strong relationship exists between non-use of helmets and alcohol consumption (Murros et al. 2023).

3.3 Alcohol and drug use

Fifty-seven out of the sixty-two hospital studies reviewed tested or observed alcohol and drug use in e-scooter riders who were injured. These studies found that patients who came into the emergency department (ED) with an injury had consumed alcohol and drugs, according to their report, that of the clinicians and through breath, blood, or urine analysis. It was found that riders who tested positive for alcohol consumption had a five times higher likelihood of having a TBI (Uluk et al., 2022). In craniomaxillofacial (CMF) injuries, 53% to 91% of the injured patients had consumed alcohol, and CMF injury was found to be closely associated with intoxication (OR = 23.1, 95% CI: 7.7, 69.6) (Shiffler et al., 2021). Other works also documented high blood alcohol levels in patients with cranial and maxillofacial injuries (Kobayashi et al., 2019; Shiffler et al.,

2021; Suominen et al., 2022). Riding performance worsened with the increasing blood alcohol concentration when the riders were required to navigate an obstacle course (Zube et al., 2022). Furthermore, the injured riders et al. (2019), who were positive for the substances used, with the most common being THC (32%), methamphetamine, or amphetamines (18%). Also, Dhillon et al. (2020) established that 17.2% of the injured riders who were tested used cannabis (13 also used drugs. Among such riders, 60 percent of the riders were tested by Kobayashi (8%), amphetamine (4.6%), opiates (8%), and cocaine (1.1%). Other similar drug tests were also done on injured escooter riders in other studies, for instance during a research by Suominen, they found that 71 percent of the riders were drunk. Correspondingly, around 12 and 27 percent of the riders were tested by Shiffler and, Lavoie-Gagne respectively. (Lavoie-Gagne et al., 2021; Shiffler et al., 2021; Suominen et al., 2022). In a survey by Comer et al. (2020), about 50% of the riders and non-riders were not aware that it is against the law to operate e-scooters while intoxicated. An impaired rider may be in violation of the rental agreement or local laws and could receive tickets and fines or be banned from future rentals. Furthermore, those caught riding with a BAC over the legal limit may also face driver's license suspension, a measure that requires police training and active enforcement (Oksanen et al., 2020).

As for the measures aimed at preventing injuries among young riders and riders who have consumed alcohol and decided to ride at night they can be implemented with the help of a nighttime riding ban (Moftakhar et al., 2020; Oksanen et al., 2020; Suominen et al., 2022). For example, e-scooters were banned from use between 9 pm and 4 am in Atlanta in August 2019 after four fatalities (GHSA, 2020; Nisson and Chu, 2020). This restriction resulted in a decrease in the percentage of nighttime injuries treated at a major trauma center in Atlanta, from 32% to 22%, but the difference was not statistically significant (Anderson et al., 2021).

3.4 Underage Riding

Many cities set age limits for riding e-scooters, yet injuries among children remain common, as shown in the research. Underage riding refers to using an e-scooter below the legal age set by local laws, usually 18 years old, although some places allow younger riders. For example, in Copenhagen, children from 12 to 16 years old can ride e-scooters if they are with a parent (Blomberg et al., 2019). It's hard to accurately judge a rider's age just by looking, but

hospital records can provide more reliable information. Studies show that between 3.3% and 14% of injured riders were not old enough to legally ride. Trivedi et al. (2019a) found that 4.7% of riders were younger than 13 years, and another study by Trivedi et al. (2019b) noted that 5.5% of those needing surgery were children. In the U.S., about 19% of emergency room visits for escooter injuries were by riders 14 years old or younger (Tark, 2022).

3.5 Inexperienced riding and e-scooter-related injuries

Although many cities have age restrictions for the use of e-scooters, children are still injured, as depicted in the research. Underage riding is defined as the use of an e-scooter before the legal age limit set by the law of the specific city or country, which is 18 years in most countries, but some countries allow children to ride them. For instance, in Copenhagen, children between the ages of 12 and 16 years can ride e-scooters if they are accompanied by a parent or legal guardian (Blomberg et al., 2019). Estimating a person's age based solely on appearance is challenging; however, hospital records provide more reliable and precise data. Research indicates that between 3.3% and 14% of the injured riders were not of the correct age to use the road. The study by Trivedi et al. (2019a) established that 4.7% of the riders were below 13 years and another study by Trivedi et al. (2019b) established that 5.5% of the patients who required surgery were children. About 19% of the emergency room visits for e-scooter-related injuries in the U.S. were made by riders 14 years of age or younger (Tark, 2022). The unexpected speed of e-scooters often surprises new riders, which causes accidents, and 33% of the injured riders claimed they were newbies to the road (Cicchino et al., 2021a; Stormann et al., 2020). Inexperience is the cause of 32% of the orthopedic injuries that are related to e-scooters (Kayaalp et al., 2023). Lime has conducted some studies and found that 36% of incidents take place within the first five rides of a user (Lime, 2023), and in Austin, TX, 63% of the accidents involved riders who have made fewer than 10 trips (Sexton et al., 2023). However, some research shows that there is no statistical significance in the severity or type of injury between the novice and experienced riders (Williams et al., 2022), but other studies show that the more experienced riders may have more serious injuries due to higher risk-taking tendencies (Cicchino et al., 2021b).

Most research today focuses on the initial period after the introduction of an e-scooter, and the riders are usually inexperienced (Sexton et al., 2023). To prevent injuries, the

interventions could be more specific to training than to separating e-scooter traffic. For example, a pre-ride safety tutorial may also be helpful for new and regular riders to improve their skills and safety knowledge (Lime, 2023). Research shows that mandatory training before the first ride significantly decreases the risk of injury (Brunner et al., 2020). Also, making everyone take a driving test could mean that everyone knows the traffic rules, as found by a study that pointed out that most accidents are caused by solo riders (Brauner et al., 2022). Thus, restricting speed or access in high-traffic areas during the first rides could also contribute to the safety of new riders.

To make e-scooters safer for new riders, well-known companies like Beam (Beam, 2023 a), Bird (Bird, 2023), and Lime (Lime, 2023) have a feature called a 'Beginner Mode'. This mode either restricts the top speed of the e-scooter or decreases the sensitivity of the acceleration to ensure that new riders do not accelerate suddenly. However, the effectiveness of 'Beginner Mode' for particular groups of users, such as new users, females, and senior citizens who are likely to be more cautious when riding, has not been well established. This feature is still optional, which has generated debate about whether it should be mandatory. The effects of making "Beginner Mode" a compulsory setting for using e-scooters and their integration into the city's transportation system require further investigation.

3.6 Speeding

Speeding is a safety threat that is likely to increase the risk of e-scooter use in urban areas. Studies clearly show that faster riding increases the frequency and severity of accidents. For instance, 50% of e-scooter injuries in the UK were associated with speeding, and 70% required surgery (Flaherty et al., 2022). At lower speeds, the force in accidents is lower, reducing the chances and severity of injuries, including head injuries (Cicchino et al., 2021b). A study on e-scooter-related bone injuries revealed that riding at a speed of more than 15 km/h resulted in injuries that required surgical repair (Kayaalp et al., 2023). Various studies have backed the necessity of enforcing speed limits (Field & Jon, 2021; Ma et al., 2021a, 2021b). The speed regulation is possible for e-scooter companies by fixing the maximum speed. Moreover, it is feasible to tell riders who exceed the speed limits by their registration data, but this raises legal issues about using personal information for traffic control.

University of Zagreb Faculty of Transport and Traffic Sciences

Table 1. Review of Human Factors of E-scooter Rider Safety

Sex and age	demographi	es				
Authors/ Year	Location	Data base(s)	Methodology	Statistical/ML approach	Study aim	Findings
Azimian &	United	Accident data from	Real-world analysis of	Zero-inflated Poisson	To identify factors contributing to	Significant factors include the ratio of young males,
Jiao, 2022	States	the Patch platform	crash data	(ZIP) and Zero-inflated	e-scooter injury accidents in Austin	median household income, public transport usage,
				Negative Binomial		land use entropy, and presence of sidewalks.
				(ZINB) models		Higher complexity in land use and more points of
						interest correlated with increased accidents.
Sexton et	United	Accident data,	Real-world analysis of	-	To understand safety in e-scooter	E-scooter injuries are increasing, with a focus on
al., 2023	States	surveys,	crash and medical		usage, focusing on perceived	head injuries and the importance of infrastructure
		observational studies,	databases		safety, rider characteristics, injury	and rider education to improve safety
		and media reports			trends, and crash characteristics	
Helmet usag	e					
Authors/	Location	Data base(s)	Methodology	Statistical/ML approach	Study aim	Findings
Year						
Currans et	United	Data types include	Real-world	Logistic regression	To examine the use and safety of e-	E-scooters can replace short automobile trips but
al., 2022	States	observations, online	observations and	analysis	scooters and their impact on	may also substitute for walking and public transit.
		surveys, and accident	analysis of		transportation modes	Low helmet use and high injury rates were noted
		data	crash/medical			
			databases			
Haworth	Australia	Online survey data	Real-world study	Logistic regression and	To understand factors associated	Most non-use of helmets is situational; factors
et al. 2024,				descriptive statistics	with non-use of mandatory e-	include risky behaviours, lack of knowledge, and
					scooter helmets and whether non-	lack of support for the law
					use is consistent or situationally	
					influenced	

Alcohol and di	rug use					
Authors/ Year	Location	Data base(s)	Methodology	Statistical/ML approach	Study aim	Findings
Anderson et	United	Medical records from	Just analysis of	Watson-Wheeler test for	To assess the effects of Atlanta's	Nighttime rental ban reduced the
al., 2021	States	emergency department	crash/medical	comparing time of arrival	nighttime ban on e-scooter rentals	proportion of e-scooter injuries during the
		visits	database(s)	distributions	on injuries	ban hours from 32% to 22%, but this was
						not statistically significant
Kobayashi	United	Multi-institutional	Real-world analysis	Pearson χ2 test, t-test, Mann-	To examine the incidence of injury,	Significant increase in e-scooter-related
et al., 2019	States	retrospective case series	of crash/medical	Whitney test, Spearman's rank	injury patterns, prevalence of	trauma, high rates of alcohol and drug use,
		data from trauma	database(s)	correlation, multivariate	helmet use, and drug and alcohol	low helmet use, and common injuries
		registries		analysis	use in e-scooter trauma	included extremity and facial fractures
Nisson and	Puerto	The study utilized	Real-world analysis	The specific statistical	To assess the public health	The findings indicate a significant rise in
Chu, 2020	Rico	accident data and reports	of crash and medical	methods are not detailed in the	implications and safety concerns	injuries related to electric scooters.
		related to electric scooter	databases.	provided context.	associated with electric scooter use.	
		injuries				
Zube et al.,	Germany	Real driving test study	Real-world	Statistical tests with p-values	To assess the effects of alcohol on	Significant deterioration in driving
2022				for significance	e-scooter driving performance	performance at BACs as low as 0.21 g/kg;
						increased risk for e-scooter drivers under
						the influence of alcohol
Oksanen et	Finland	Medical records of	Just analysis of	Descriptive statistics with	To identify the occurrence and	Majority of injuries occurred at night, on
al., 2020		patients with craniofacial	medical database(s)	absolute numbers and	characteristics of craniofacial	weekends, with high alcohol intoxication;
		fractures or dental		percentages	fractures and dental injuries	
		injuries				

Underage Ric	ling					
Authors/ Year	Location	Data base(s)	Methodology	Statistical/ML approach	Study aim	Findings
Blomberg	Denmark	The data used were from	Real-world data	Descriptive analyses and	The aim of the study was to	The study found that manual scooter riders
et al., 2019		emergency medical services	analysis from medical	non-parametric statistics	describe injuries related to	were mostly children with minor injuries,
		(EMS) records, which included	databases	were used for comparative	manual and electric scooter use	while electric scooter riders were young
		accident data related to scooter		analyses	from January 2016 to July 2019	adults often injured under the influence of
		injuries				alcohol or drugs.
Inexperience	d riding and	e-scooter-related injuries				
Authors/ Year	Location	Data base(s)	Methodology	Statistical/ML approach	Study aim	Findings
Brunner et	Germany	Data from field trials and real	Real-world	The study utilized a 9D-	To assess the dynamics and	Novice riders can maintain stability while
al., 2020		driving test study		Kalman filter for data	behaviour of e-scooter riders,	signalling; significant training effects were
				processing	particularly regarding stability	observed.
					while performing hand signals.	
Cicchino et	United	Data from medical records and	Real-world study	Logistic regression and	To compare injury	E-scooter riders had higher injury rates per
al., 2021a	States	structured interviews with	based on emergency	relative risk calculations	characteristics and	mile travelled, different injury types, and
		injured riders	department visits		circumstances between e-	demographics compared to cyclists
					scooter riders and cyclists	
Stormann	Germany	Data from emergency	Real-world analysis of	Chi-square test and	To identify injury patterns	56.6% of patients had serious injuries;
et al., 2020		department presentations and	crash data from	Fisher's exact test for	following E-scooter accidents	upper extremities were most affected; low
		clinical records	emergency	categorical variables;	and evaluate the need for	helmet usage; significant burden on
			departments.	descriptive statistics.	treatment.	emergency departments.
Brauner et	Germany	Media and police reports	Real-world analysis of	Sentiment analysis,	To identify relevant causes and	Key issues include driving under the
al., 2022			crash data	network analysis, and	implications associated with e-	influence of alcohol, riding in pairs, and
				clustering (Louvain	scooter crashes in Germany	common crash causes.
				algorithm)		

Speed						
Authors/ Year	Location	Data base(s)	Methodology	Statistical/ML approach	Study aim	Findings
Flaherty et	United	Retrospective case	Real-world analysis of	Descriptive analysis,	To assess the injury pattern and	Significant foot and ankle injuries were
al., 2022	Kingdom	analysis of E-scooter foot	crash/medical data	Fisher's exact test, Odds	severity of foot and ankle trauma	observed, with 45% requiring surgery;
		and ankle injuries		ratios	associated with E-scooter use	higher speeds correlated with more severe
						injuries
Cicchino	United	Data from medical	Real-world study based	Logistic regression and	To compare injury characteristics	E-scooter riders had higher injury rates per
et al.,	States	records and structured	on emergency	relative risk calculations.	and circumstances between e-	mile travelled, different injury types, and
2021b		interviews with injured	department visits.		scooter riders and cyclists.	demographics compared to cyclists.
		riders.				
Kayaalp et	Turkey	The data used were from	The study was based on	Pearson's Chi-square test,	The study aimed to analyse	The study found a high rate of operative
al., 2023		electronic hospital	real-world data from	Fisher's exact test, and	orthopaedic injuries associated	treatment (39%), significant regres among
		records and follow-up	medical records and	Mann-Whitney U-test were	with e-scooter use, factors related	patients (74%), and identified e-scooter
		surveys	follow-up surveys	used for analysis.	to these injuries, and the impact on	accidents as a leading cause of hip
					patients' lives.	fractures in young adults.
Field &	Australia	Data from policy	Real-world study	Grounded theory approach	To explore e-scooter governance	E-scooter governance is a contested area
Jon, 2021		documents, media		for qualitative analysis	and its implications for urban	requiring ongoing negotiation between
		contents, and council			planning	public and private interests.
		meeting minutes				
Ma et al.,	United	Data from naturalistic	Real-world data	Descriptive analysis and	To evaluate the riding risk of E-	E-Scooter riders experience higher
2021a,	States	riding experiments,	collection through	data mining techniques were	Scooters and understand their	frequencies of vibration events on
		mobile sensing data, and	naturalistic riding	employed.	interactions with different riding	sidewalks compared to vehicle lanes,
		GPS-tracked trips.	experiments		environments.	indicating increased safety challenges.
Ma et al.,	United	Data types: Origin-	Real-world analysis	Descriptive analysis and	To investigate E-Scooter	E-Scooter crashes are unevenly
2021b	States	destination (OD) data,	using news reports and	cross-tabulation analysis.	operations and safety, focusing on	distributed, with significant safety
		news reports, and	accident data.		usage patterns and safety issues.	concerns related to riding conditions and
		accident data.				user demographics.
		accident data.				user demographics.

3.7 Rider distraction

Rider distraction has been a focus of five studies (Arellano & Fang, 2019; Austin Public Health, 2019; Gioldasis et al., 2021; Huemer et al., 2020; Tark, 2022). These studies collected data from various locations, including San Jose, California; Paris, France; Braunschweig, Germany; and across the U.S. using the NEISS database. Common distractions for riders included listening to music or podcasts, taking selfies, talking, streaming videos, using navigation tools, interacting on social media, and eating, drinking, or smoking while riding. Approximately 26% of injured riders reported holding something while riding (Tark, 2022). About 5% of e-scooter injuries in the U.S. were linked to listening to music or using a phone (Tark, 2022). The most detailed study showed that using headphones or earphones was noted among 11.5% of riders, talking accounted for 2.8%, and eating, drinking, or smoking was 1.2% in a sample of both shared and private e-scooter riders in Braunschweig, Germany (Huemer et al., 2022). In Paris, riders reported being distracted by music (65%), GPS (67%), texting (32%), phone calls (33%), and taking photos (21%) (Gioldasis et al., 2021).

3.8 Infrastructure-related challenges

People are currently discussing the issue of safe routes for e-scooters and varying local regulations for their use. There is also a concern for the safety of pedestrians with e-scooters since the latter are allowed on the sidewalks. Issues such as e-scooters moving at a higher speed than pedestrians can result in anger, incidents, and injuries, particularly on narrow tracks with several objects (Ma et al., 2021; Uluk et al., 2022). To avoid confrontation, some cities have prohibited e-scooters from using the roads. But this has resulted in some near misses with cars, which makes the riders uncomfortable (Sucha et al., 2023; Pourfalatoun et al., 2023). The research indicates that while riding on the roads, e-scooter accidents result in moderate to critical or even fatal injuries to the e-scooter riders if the accident involves a car (Cicchino et al., 2021; Neuroth et al., 2022).

Studies have usually indicated that e-scooters should be used on bike lanes since they operate at the same rate as bicycles (Toofany et al., 2021). Surveys from cities in different countries and regions reveal that riders prefer bike lanes to sidewalks or roads (Cicchino et al., 2021; Tian et al., 2022; Lanza et al., 2022). Nevertheless, some riders have indicated they have

been uncomfortable in the bike lanes (Lyons et al., 2020). Suggestions for enhancing integrated infrastructure include widening bike lanes and using physical barriers to separate bike lanes from the sidewalks. It is also advised that bike lanes should be cleared and in good condition and not have objects on the ground (Blazanin et al., 2022; Laa & Leth, 2020; Pérez-Zuriaga et al., 2023). This is because regulating e-scooters to use these paths only as a means of transport is not always straightforward. Some recommendations have been made to enhance these paths to make them more e-scooter friendly (Anke et al., 2023), but that does not always mean the riders will use them. Instead, the rider tends to assess the path and determine if it is convenient and comfortable to use rather than looking at the safety or the regulations.

For instance, if e-scooters are restricted in terms of speed, then riders might prefer to use the sidewalk rather than the road (Cicchino et al., 2023). This is because bad road surfaces constitute a significant safety threat, and many riders claim that they have been involved in an accident due to poor paths (Cicchino et al., 2021; Lavoie-Gagne et al., 2021). Also, the process of managing the parking of e-scooters is essential, especially in crowded places, to avoid the congestion and dangers that come with e-scooters being placed anywhere (Hardt & Bogenberger, 2019; James et al., 2019; Sikka et al., 2019; Wallius et al., 2021; Zou et al., 2020).

Several cities are increasing the amount of space for e-scooter safety and comfort. In these locations, e-scooter riders are more likely to ride on bike lanes than to use the sidewalks. Nevertheless, there is currently limited understanding of the efficacy of such measures in decreasing the interactions between e-scooters and other road users, as well as the frequency and severity of injuries. A study of e-scooter riders and cyclists suggests the possibility of shared use, and support for e-scooters in cycling facilities (Anke, Ringhand, & Petzoldt, 2024). However, the need for future longitudinal research was acknowledged to observe how riders interact as e-scooters appear more in bike lanes. Additional studies are required to establish if including e-scooters in bike lanes can stop them from using sidewalks and busy roads, resulting in fewer confrontations.

Table 2. Review on Rider Distraction and Infrastructure-related Challenges

Rider distrac	tion					
Authors/ Year	Location	Data base(s)	Methodology	Statistical/ML approach	Study aim	Findings
Arellano &	United	Observation data	Real-world	t-tests and ANOVA for	To study e-scooter riding behaviour,	E-scooter riders travel faster on streets than
Fang, 2019	States	collected through direct	observations	statistical analysis	focusing on speed, helmet use, and	on sidewalks, with low helmet use and
		observation of e-scooter riders			distractions, and to compare it with other modes of transport	minimal distraction from cell phones
Gioldasis et	France	Data type: Face-to-face	Real-world	Approaches: Logit models,	To explore risk-taking behaviours	Young and male riders are more likely to
al., 2021		Road survey		mixed logit models, and	among e-scooter users in Paris, focusing	engage in risky behaviours; longer trip
				structural equation	on factors like alcohol and drug use, and	durations are associated with increased risk-
				modelling	smartphone usage while riding	taking
Huemer et	Germany	Observational data	Real-world	Logistic regression models	To estimate the frequency of secondary	22.7% of cyclists engaged in secondary tasks;
al., 2020		collected through direct	observational	were used for analysis	tasks while cycling and examine	most common was wearing headphones
		observation of cyclists	study		influencing factors	(13.1%). Younger cyclists and females were
						more likely to engage in secondary tasks
Huemer et	Germany	Data type: Observational	Real-world	Logistic regression models,	To estimate the frequency of secondary	13.4% engaged in secondary tasks; 17.8%
al., 2022		study	observational	chi-squared tests,	tasks, safety equipment use, and rule	wore helmets; 90.8% did not commit traffic
			study	hierarchical clustering	violations among bicycle and e-scooter	rule violations; significant correlations
				analysis	riders in Germany	between secondary tasks and risky
						behaviours

University of Zagreb Faculty of Transport and Traffic Sciences

Infrastructure-re	elated challenges					
Authors/ Year	Location	Data base(s)	Methodology	Statistical/ML approach	Study aim	Findings
Hardt &	Germany	Field test data, travel diaries,	real-life field test	Descriptive statistics,	To investigate the potential of	Majority of daily trips suitable for e-
Bogenberger,		pre-post surveys		longitudinal survey	e-scooters and user	scooters; charging infrastructure
2019				analysis	acceptance in urban	sufficient; subjective safety and
					environments	weather conditions are limiting
						factors
Sucha et al.,	Australia,	Data were collected through an	Real-world data was	Ordinal logistic regression	To describe the effects of e-	E-scooter riders often use sidewalks,
2023	Belgium, the	online survey.	collected through an	and linear regression were	scooters on pedestrians,	perceived safety varies by country,
	Czech		online survey.	used for statistical	focusing on interactions,	and many pedestrians find e-scooter
	Republic,			analysis.	perceived safety, and	interactions annoying.
	Norway, and				conflicts.	
	Sweden.					
Pourfalatoun	United States	Online survey data collected	Real-world study based	Binary logistic regression,	To compare perceptions of	Users showed higher risk propensity,
et al., 2023		from participants	on survey responses	chi-squared tests,	safety, trip behaviours, risk	felt safer riding e-scooters, and had
				Cochran's Q tests, and	propensity, and technology	more positive perceptions of e-
				McNemar tests	adoption between e-scooter	scooter sanitation compared to non-
					users and non-users	users
Neuroth et al.,	United States	The study utilized data from	The study is an analysis	The study employed	To characterize e-scooter	Approximately 18.6% of e-scooter
2022		the National Electronic Injury	of a medical database	weighted tabular analyses	injuries, particularly those	injuries involved motor vehicles, with
		Surveillance System (NEISS),	(NEISS) regarding	and Rao-Scott adjusted	involving motor vehicles,	a higher proportion of males and
		which includes emergency	real-world e-scooter	chi-square tests for	using national injury	younger individuals among those
		department visit data related to	injuries.	statistical analysis.	surveillance data.	injured. Injuries involving motor
		e-scooter injuries.				vehicles were more severe.
Wallius et al.,	various urban	media coverage and	real-world analysis	Qualitative analysis.	To explore the relationship	The findings highlight the tensions
2021	locations	promotional materials related	through media and		between play and mobility in	between playful and practical aspects
	globally	to e-scooters	promotional materials.		urban settings, particularly	of e-scooter usage, including issues of
					through the lens of e-scooters	safety, data privacy, and urban
						sustainability.
Zou et al., 2020	United States	GPS-tracked trips data from e-	Real-world analysis of	Descriptive statistics and	To analyse e-scooter travel	E-scooter trips are concentrated in
		scooter share program	e-scooter trip data	correlation analysis	patterns and behaviours in	specific areas and times, with
					Washington, D.C	significant usage in leisure contexts.

Faculty of Criminal Justice and Security

Tian et al.,	United States	Data were collected through an	Real-world data	Negative Binomial	The aim was to identify	Males and frequent users had higher
2022	and other countries	online survey	collected from e-scooter riders.	regression and Poisson robust variance regressions were used.	characteristics and risk factors for e-scooter-related crashes and injuries.	crash risks; riding on bike lanes reduced injury risks.
Lanza et al., 2022	United States	Observation data collected through systematic direct observation	Real-world study	Binomial logistic regression and chi-square tests of independence	To observe travel behaviours of different non-vehicle travellers on various types of transportation infrastructure	Significant differences in travel behaviours; many travellers crossed into other infrastructure and used not recommended infrastructure, with variations by travel mode
Blazanin et al., 2022	United States	online survey of Austin area residents	Real-world data collected from an online survey	Employed a Generalized Heterogeneous Data Model (GHDM) for analysis	The aim was to analyze factors affecting first-use and use frequency of ESS and BSS, focusing on psychosocial constructs and demographics.	The study found that safety concerns significantly impact the first-use and frequency of both ESS and BSS, with distinct pathways for each mode.
Laa & Leth, 2020	Austria	Online survey and field observations	Real-world study.	Descriptive statistics and observational analysis.	To assess the socio-economic profiles and usage patterns of e-scooter users in Vienna.	E-scooter users are predominantly young, male, and highly educated; e-scooters mainly replace walking and public transport trips.
Pérez-Zuriaga et al., 2023	Spain	Simulation data from PC-Crash software.	Simulator (PC-Crash).	the study focused on simulation results rather than statistical analysis	To analyse the kinematics and injury risk of micromobility users in car-to-micromobility user side-impact crashes	E-scooter riders experience higher HIC15 values than cyclists in side-impact crashes, indicating greater injury risk. Recommended speed limit at intersections is below 40 km/h
Anke et al., 2023	Germany	Online experiment data	Real-world scenarios presented in video clips	Two-way ANOVAs for analysis	To investigate ingroup- outgroup phenomena between cyclists and e-scooter riders	Cyclists and e-scooter riders judged in group rule violations more harshly than outgroup violations, indicating ingroup discrimination

3.9 Policy-related challenges

It has been established that enforcing rules helps reduce traffic violations among escooter riders, as stated by Useche et al. (2022a,2022b). However, in some countries, the legal status of e-scooters is not well-defined, which raises questions about their use (Serra et al., 2021). Based on the city, e-scooters may be controlled like pedestrians, bicycles, or motorized vehicles. The present discussion on the legal framework for e-scooters, including where they can be allowed, speed limits, helmet requirements, and time and space restrictions on their use suggests the need for more detailed studies.

All the experts agreed that e-scooters should at least be made to obey the same rules as bicycles. However, it is difficult to extend the findings from bicycle research to e-scooters because e-scooters are used differently, and they pose a higher risk of injury, are less stable, and faster than bicycles, with a high center of gravity, slow reaction times, and poor braking performance (Dozza et al., 2022; Harbrecht et al., 2022). Some safety measures that were suggested include Encouraging people to wear helmets, educating riders, not consuming alcohol while riding, ensuring that the e-scooter has a good lighting system, and obeying traffic rules (Barker et al., 2022; Pepper et al., 2022). The literature has a wide range of support for streamlining e-scooter regulations to increase adherence (Crowe & Elkbuli, 2021). The role of social media in shaping people's behaviour is also evident, particularly when companies like Bird post pictures of people riding without helmets, which can be interpreted as a way of justifying this behaviour (Allem & Majmundar, 2019). Surveys have revealed that riders and non-riders of the e-scooters are likely to be unaware of the rules that apply to them, which can result in an accident (James et al., 2019). A recent study in Australia indicates that informing the public about the e-scooter rules may not alter risky behaviours. Instead, efforts should be made to shift the perception of risk, which may be more successful (Phipps & Hamilton, 2024). Therefore, there is a need to have more specific educational campaigns for the enforcement of helmet laws and the effects of head injuries (Haworth et al., 2024). Displaying safety messages via apps, along with training camps and mandatory licenses or insurance, are suggested measures to improve e-scooter safety.

Table 3. Review of Policy-related Challenges

Policy-related ch	allenges					
Authors/ Year	Location	Data base(s)	Methodology	Statistical/ML approach	Study aim	Findings
Useche et al.,	Spain	The data were collected	Real-world data was	Statistical analyses included	To compare the external-rated	E-scooter riders were perceived as
2022		through online surveys and	collected from	paired t-tests and multi-	behaviour of cyclists and e-scooter	having riskier behaviours than cyclists,
		qualitative interviews	external raters'	group structural equation	riders and understand perceived	with significant differences in
			perceptions	modelling (MGSEM)	differences in their behaviours	violations and errors reported by
						external raters
Comer et al.	United	Data from a cross-sectional	Real-world data	Descriptive statistical	To determine self-reported incidences	44% of respondents believe e-scooters
(2020)	States	survey	collected from	analysis and Chi-square	of health and safety hazards among e-	pose a health and safety threat. 15% of
			survey participants	tests	scooter riders, knowledge of e-scooter	riders reported crashing or falling off.
					laws, and attitudes towards e-scooter	Only 2.5% always wear helmets.
					usage	
Serra et al.,	Portugal	Data from various studies,	Real-world analysis	-	To review head protection in electric	High rates of head injuries among e-
2021		including accident data and	of crash and medical		micromobility and provide	scooter usage.
		observational studies.	databases.		recommendations for safety measures.	
Dozza et al.,	Sweden	Data from field trials	Real-world	Linear regression and	To compare the kinematics and	Bicycles had shorter braking distances
2022				modelling techniques.	controls of bicycles and e-scooters in	and higher deceleration than e-scooters.
					field trials.	
Salas-Niño,	United	Data from the CDESRII	Real-world analysis	Descriptive analysis.	To analyse the effectiveness of Austin's	Current regulations inadequately
2022	States	study, which included	of crash and medical		e-scooter safety regulations using	address safety concerns; only 16.6% of
		medical records and	databases.		epidemiological components.	identified risk factors are covered.
		interviews with injured				
		riders.				
Crowe &	United	National Electronic Injury	Analysis of	Analysis of hospital	To highlight the need for regulation	Significant increase in e-scooter
Elkbuli, 2021	States	Surveillance System	crash/medical	admission data	and safety measures for e-scooter use.	injuries, particularly head injuries; low
		(NEISS) data.	database(s)			helmet use; need for regulation.
Allem &	United	Data from social media	Real-world (analysis	-	To determine how much 'Bird'	Rare emphasis on protective gear
Majmundar,	States	(Instagram posts)	of social media posts)		emphasized safety in its Instagram	
2019					posts.	

University of Zagreb Faculty of Transport and Traffic Sciences

Faculty of Criminal Justice and Security

James et al.,	United	Online survey and	Real-world study	Descriptive statistics	To investigate e-scooter parking and	16% of e-scooters were parked
2019	States	observational study.			perceptions of safety among riders and	improperly; 6% blocked pedestrian
					non-riders	right-of-way. Riders felt safer around e-
						scooters compared to non-riders
Phipps &	Australia	Online survey data from	Real-world data	Path modelling using the	To investigate willingness to engage in	Subjective norm predicted willingness
Hamilton,		262 Australian	collected through an	lavaan package in R.	dangerous e-scooter behaviours using	for all behaviours; attitude and
2024		undergraduate students.	online survey.		an integrated model of behaviour.	perceived behavioural control predicted
						two behaviours; males showed higher
						willingness to engage in risky
						behaviours.

3.10 E-scooter reliability

The third theme is the reliability of e-scooters and their possible link with injuries. The Consumer Product Safety Commission (2021) made 48 specific examinations and determined numerous problems: Brake failure in 18 cases, fire hazard in 12, power off without warning in 5, control panel problems in 5, several causes in 5, and 8 cases with an unknown cause that led to e-scooter accidents (Tark, 2022). Moreover, seven researchers established that failures were the reason for 3%-16% of e-scooter injuries (Cicchino et al., 2021; Lavoie-Gagne et al., 2021). In particular, mechanical failures, including poor-quality brakes, throttles, handlebars, and steering systems, were the cause of 16% of the cases reported by Cicchino et al. (2021). Austin Public Health (2019) reported that 19% of riders they interviewed believed their e-scooters had malfunctioned during use. A Consumer Reports survey showed that 8% of the participants reported that their e-scooters were not in good condition or were broken. Moreover, brake failures were reported to be the most common cause of accidents in previous studies (Seabrook, 2021; Uluk et al., 2022).

3.11 Patterns of injury

a) Severity

Research suggests that injuries from e-scooter accidents are generally less severe than those from other transportation modes (Beck et al., 2020; Demir et al., 2023; Harbrecht et al., 2022; Toofany et al., 2021). However, the mortality rate associated with e-scooters is still a significant global concern, highlighting the potential for fatal outcomes despite the prevalence of minor injuries (Aulino et al., 2022; Dhillon et al., 2020; Traynor et al., 2022).

b) Motor vehicle collisions

Vehicle collisions are a common cause of injury among e-scooter riders, as detailed in 26 studies. These incidents, which may occur when e-scooters are hit by or collide with motor vehicles on roads or at intersections, tend to be more severe due to the significant energy transfer to the less protected rider (Dhillon et al., 2020). Factors such as higher traffic volumes (Kim et al., 2021) and the severity of injuries (Dhillon et al., 2020) contribute to the high frequency of vehicle involvement in reported injuries. Apart from these findings, other hospital injury

studies indicate that incidents of e-scooters avoiding a vehicle or collisions involving striking or being struck by a vehicle range from 1.6% to 16.1% of cases.

c) Injuries and deaths of Pedestrians and Bicyclists in connection with e-scooters

The use of e-scooters has been associated with injuries and fatalities of pedestrians and bicyclists. A fatal accident, for instance, involved an e-scooter hitting a pedestrian crossing the road (Tark, 2022). Further, an older woman suffered from a spinal fracture when she was hit by an e-scooter (Sikka et al., 2019). More so, the pedestrians injured by e-scooters were above 60 years 44.1%, which may be attributed to the age factor. There were instances of e-scooter riders colliding with pedestrians and vice versa, according to the Portland Bureau of Transportation (2018). This paper shows that pedestrians feel less safe when the e-scooter comes up from behind at a high speed than when it comes from the front (Che et al., 2020). One of the pedestrian accidents involved an intoxicated driver (Blomberg et al., 2019). Bicyclists have also suffered from modulo accidents or avoidance of e-scooters (Cicchino et al., 2021).

d) Anatomical places of Injury

The injuries from e-scooter accidents involve several body parts, and forty-six studies provided information on the specific parts. The most frequent injuries were to the head, face, and neck the frequency of which ranged between 15% and 62.7% (Lavoie-Gagne et al., 2021; Harbrecht et al., 2022), followed by the upper extremity injuries, including the wrist and forearm which were seen to range between 16.7% and 72.5% (Bodansky et al., 2022). Lower limb injuries, which include the ankle, shin, and knee, were also noted, with thigh and pelvic region injuries being rarer (Uluk et al., 2022). Abdominal, thoracic, chest and spinal injuries were among the least reported (Moftakhar et al., 2020). Several studies reported multiple injuries in different parts of the body (Cohen et al., 2021; Dela Cruz et al., 2022).

The type of specialists and the level of detail in classifying the affected areas determined the frequencies of the reported injuries. Many studies were directed toward certain types of injuries, such as head, neck, and craniomaxillofacial injuries; one study showed that 86.2% of craniofacial injuries that occurred during e-scooter falls were to the upper and midface areas because the riders protected their chin, leaving these areas uncovered (Trivedi et al., 2019).

Different kinds of trauma, such as surgical, orthopaedic trauma, and radiological, were seen to be associated with varying types of injuries in other studies (Dhillon et al., 2020).

e) Types of injuries

Thirty-nine works have reviewed various kinds of traumas experienced by the e-scooter riders. These injury types are also usually associated with the part of the body where the injury occurred, according to the findings of numerous research studies (e.g., Harbrecht et al., 2022). For example, fractures are more frequent than other injuries, with rates reported to be between 11.6% (Blomberg et al., 2019) and 73.6% of all injuries (Dela Cruz et al., 2022) with a separate subgroup of more severe open fractures observed at 12.9% (Dela Cruz et al., 2022).

The percentages of the reported types of injuries are quite divergent and may be attributed to the medical facility where the injured rider is seen, including orthopedic surgery units or trauma centers (Dela Cruz et al., 2022; Trivedi et al., 2019b). Hospitals documented fractures more often than primary care clinics (29.3% versus 9.4%) (Bekhit et al., 2020), and the injuries also had dislocations in addition to fractures. The majority of the soft tissue injuries observed included lacerations, abrasions, punctures, contusions, sprains, and strains, which were more frequent in primary care settings than in hospitals (52.7% and 24.4%, respectively; Bekhit et al., 2020). For instance, abrasions and contusions ranged between 10.2% and 33.7% of the injuries, while lacerations ranged between 14% and 72.6%. Head injuries are categorized explicitly as concussions, traumatic brain injuries (TBI), or severe head injuries such as brain hemorrhage and fractures of the skull according to the different specialists employed in the study (Dhillon et al., 2020; Suominen et al., 2022).

3.12 E-Scooter Crash Trends and Fatalities

The rates of e-scooter crashes in the U.S. from 2017 to 2021, were generally on the rise before the COVID-19 pandemic, with incidents increasing from 1 in 2017, 5 in 2018, 25 in 2019, decreasing slightly to 14 in 2020, and then rising again to 23 in 2021 (Tark, 2022). Most of the deaths were due to being run over by a vehicle (49 cases), followed by tip-overs (9 cases), unspecified trips (4 cases), charging fires (2 cases), collisions with a pedestrian (2 cases), being hit by a commuter train (1 case), and operating while intoxicated (1 case) (Tark, 2022). Moreover, 55 out of 62 fatalities were males, and only 7 were females. Moreover, six papers included

information on fatalities among their patients (both crash data and post-crash analysis) (Dhillon et al., 2020; Ioannides et al., 2022; Kim et al., 2021; Shiffler et al., 2021). International data up to 2020 also reported another 21 deaths in countries other than the United States (ITF, 2020)

Table 4. Review on Pattern Injury

Severity						
Authors/ Year	Location	Data base(s)	Methodology	Statistical/ML approach	Study aim	Findings
Beck et al.,	New	The data used were from	Real-world analysis	χ2 test and Fisher's exact	Describe the impact of	The introduction of e-scooters resulted in 56
2020	Zealand	electronic medical records of	of crash and medical	test for analysis	the e-scooter sharing	related ED presentations, with most injuries
		emergency department visits	databases		service on emergency	being minor. On average, one ED bed was
		related to injuries.			department presentations	occupied for nearly three hours daily by e-scooter
					and injury patterns	patients
Demir et	Turkey	Accident data from clinical	Real-world analysis	Descriptive statistics,	Analyse the	Majority of victims were university students,
al., 2023		records.	of crash/medical	Mann-Whitney U-test,	characteristics of e-	most injuries were minor, predominantly soft-
			database(s).	Kruskall–Wallis test,	scooter-related injuries	tissue injuries.
				Pearson's Chi-square, and	and accidents among	
				Fisher's exact test.	young people.	
Trivedi et	United	Medical records from a Level I	Real-world analysis	Descriptive statistics;	Evaluate the incidence	52 patients (57.7%) had craniofacial injuries;
al. (2019a)	States	trauma center; retrospective	of crash/medical	median and interquartile	and types of craniofacial	high prevalence of severe injuries; no helmet use
		case series	database(s)	range for non-normally	trauma associated with e-	reported.
				distributed variables.	scooter use.	
Trivedi et	United	The data used were from a	Real-world data from	The study used descriptive	Characterize injuries	The study found that 249 patients presented with
al. (2019b)	States	retrospective cohort medical	emergency	statistics, including	associated with standing	injuries, with common injuries being fractures
		record review and public	department	proportions, means, and	electric scooter use and	(31.7%) and head injuries (40.2%). Helmet use
		observations of scooter riders.		standard deviations.	common use practices.	was low (4.4%).
Murros et	Finland	Retrospective study data from a	Real-world analysis	Firth logistic regression	Compare clinically	E-scooter patients were younger, more likely
al. 2023		tertiary trauma center,	of crash/medical	analysis, univariate and	relevant variables,	under the influence of alcohol, and sustained
		including patient records	database(s)	multivariate analyses	incidence, and severity	more severe craniofacial fractures compared to
					between bicycle and e-	bicycle patients
					scooter-related facial	
					fractures	
Moftakhar	Austria	Data from medical records,	Real-world analysis	Statistical analysis using	Report on the incidence	175 patients sustained e-scooter injuries; 40.6%
et al., 2021	(Vienna)	including demographics, injury	of crash/medical	SPSS 26.0 software,	and severity of e-scooter-	had major injuries, primarily to the head and
		patterns, types of injury, and	database(s)	independent sample t-test,	associated injuries and	upper extremities. Injuries peaked during
		treatment		and Chi-square test	identify protective	nighttime, and older patients had higher injury
						severity scores

					measures to decrease	
					morbidity	
Traynor et	United	The study utilized data from the	The research was	The authors used interrupted	Determine whether the	The study found that there was a significant
al., 2021	States	National Electronic Injury	conducted through an	time series (ITS) analysis,	introduction of e-scooter	increase in serious motorized scooter injuries
		Surveillance System (NEISS),	analysis of a medical	chi-square tests,	sharing systems	coinciding with the introduction of e-scooter
		which records emergency	database, specifically	multivariable logistic	increased serious	shares in the U.S., with hospitals near e-scooter
		department encounters related	the NEISS.	regression, and	scooter-related injuries	shares experiencing a notable rise in
		to consumer product-related		autoregressive parameters to	across the United States	hospitalizations due to scooter-related injuries
		injuries		model the data.		
Toofany et	Canada	Databases used: Medline,	Real-world analysis	Narrative synthesis and	Evaluate injury patterns	Head, upper extremities, and lower extremities
al., 2021		Embase, SafetyLit, Transport	of crash and medical	descriptive statistics were	and circumstances	were most vulnerable to injuries, with low helmet
		Research International	databases	used for analysis	associated with electric	use among riders. Most injuries were minor, and
		Documentation (TRID).			scooter collisions.	falls were the leading cause.
Aulino et	Italy	Case report data from an	Real-world case	Descriptive analysis of case	Data repository	Analyse cranio- The case highlighted
al., 2022		electric scooter accident.	analysis.	report	associated with the	encephalic trauma severe craniofacial
					manuscript	from an electric injuries and emphasized
						scooter accident and the need for compulsory
						advocate for helmet helmet use to reduce
						use fatalities

Motor vehicle collision	ons					
Authors/	Location	Data base(s)	Methodology	Statistical/ML	Study aim	Findings
Year				approach		
Dhillon et al., 2020	United	The data used were trauma	Real-world data	Data were summarized	Characterize hospital admissions	The study found that 87 patients were
	States	registry data from 9 urban	analysis from	using percentages for	and outcomes related to electric	treated for scooter-related injuries,
		trauma centres, focusing on	medical databases	categorical variables and	scooter injuries among Southern	primarily involving head and face
		patient demographics,	related to e-scooter	means with standard	California trauma centres and to	injuries, with 20.7% requiring ICU
		diagnoses, interventions, and	injuries	deviations for continuous	understand regional variations in	admission and 17.2% needing surgical
		outcomes related to e-scooter		variables.	injury incidence	intervention. Helmet use was low
		injuries				(18.4%)

Faculty of Criminal Justice and Security

Kim et al., 2021	South Korea	The Emergency Department- based Injury In-Depth Surveillance (EDIIS) database, which includes accident data	An analysis of crash/medical database(s)	Descriptive and correlation analysis	Describe the characteristics of PMD-related injuries presented to emergency departments and to determine differences in injury types and body locations based on the type of PMD.	The study found that most PMD-related injuries occurred in men aged 19-59, primarily due to traffic accidents, with the head being the most commonly injured body part. Only 6 patients wore helmets.
	of Pedestrians	and Bicyclists in connection w	ith e-scooters			
Authors/ Year	Location	Data base(s)	Methodology	Statistical/ML approach	Study aim	Findings
Tark, 2022	United	Data from the National	Analysis of	Statistical significance	To summarize injuries, deaths, and	Significant increase in ED visits for
	States	Electronic Injury	crash/medical	tests (p-values) and	hazards associated with	micromobility products; 129 fatalities
		Surveillance System	databases	raking ratio estimation	micromobility products from 2017	reported from 2017 to 2021, with e-
		(NEISS) and Consumer		for handling nonresponse	to 2021	scooters being the most involved
		Product Safety Risk				
		Management System				
		(CPSRMS)				
Sikka et al., 2019	United	Accident data from	Real-world	Primarily descriptive	To highlight the safety risks and	The study found that pedestrians,
	States	emergency department visits	analysis of	analysis	incidence of injuries for pedestrians	particularly vulnerable groups, face
			crash/medical		associated with e-scooters	significant injury risks from electric
			database			scooters, including severe injuries and
						financial burdens
Che et al., 2020	Singapore	Data from virtual reality	Simulator (virtual	Wilcoxon signed rank	To determine user attitudes toward	Lower speeds (10 km/h) perceived as
		experiments assessing user	reality)	test and Wilcoxon rank	ES operating speed during	safer in overtaking; 15 km/h rated
		attitudes		sum test	pedestrian-ES interactions on	safer in face-to-face interactions; ES
					shared footpaths	riders felt 10 km/h was too slow
Anatomical places of	f Injury					
Authors/	Location	Data base(s)	Methodology	Statistical/ML	Study aim	Findings
Year				approach	·	
Lavoie-Gagne et	United	Data from the institutional	Just analysis of	Multivariable logistic	To characterize e-scooter injuries	40.7% of patients required hospital
al., 2021	States	electronic medical record	crash/medical	regression models and	and provide risk stratification tools	admission; 14.7% sustained major
		database, including clinical	database(s)	nomograms for risk	for modifiable risk factors	trauma. Modifiable risk factors
		encounters with e-scooter		stratification	associated with injury morbidity.	included age, substance use, and lack
		injuries				of helmet use

DI III (2020)	** ** *	TTI 1	70 1 11 1	7		
Dhillon et al. (2020)	United	The data used were trauma	Real-world data	Data were summarized	The aim was to characterize	The study found that 87 patients were
	States	registry data from 9 urban	analysis from	using percentages for	hospital admissions and outcomes	treated for scooter-related injuries,
		trauma centres, focusing on	medical databases	categorical variables and	related to electric scooter injuries	primarily involving head and face
		patient demographics,		means with standard	among Southern California trauma	injuries, with 20.7% requiring ICU
		diagnoses, interventions, and		deviations for continuous	centres and to understand regional	admission and 17.2% needing surgical
		outcomes related to e-scooter		variables.	variations in injury incidence	intervention. Helmet use was low
		injuries				(18.4%)
Bodansky et al.,	United	Data from electronic patient	Real-world	Unpaired t-test and	To evaluate the incidence and	Injury rates for e-scooters were
2022	Kingdom	records, rental e-scooter	analysis of	Pearson coefficient for	severity of musculoskeletal e-	comparable to bicycles; 26.1 injuries
		usage statistics, and weather	crash/medical	correlation	scooter injuries in Liverpool	per million km for e-scooters and 24.1
		data	database(s)			for bicycles
Uluk et al., 2021	Germany	Prospective observational	Real-world study	Descriptive analyses,	To investigate trauma mechanisms,	Most injuries were multifocal, with
		data from emergency		Student's t-test, Chi-	injury patterns, and risk factors	lower limbs (42%) and head injuries
		departments, including		square test, Fisher's	associated with E-scooter	(40%) being most affected. Alcohol
		patient-related and incident-		exact test, McNemar	incidents.	consumption was linked to traumatic
		related data, questionnaires.		tests, Mann-Whitney U		brain injuries.
				test.		
Cohen et al., 2021	United	National Electronic Injury	Just analysis of	Wilcoxon rank-sum test,	To describe the epidemiology of	Increased incidence of fractures and
	States	Surveillance System	crash/medical	Chi-squared test, Fisher's	admitted paediatric e-scooter	polytrauma in children compared to
		(NEISS) data, focusing on e-	database(s)	exact tests	injuries and compare them with	adults; significant growth in ED
		scooter injuries.			existing literature on adults.	admissions from 2017 to 2018; low
						helmet use among injured children.
Types of injuries						
Authors/Published	Location	Data base(s)	Methodology	Statistical/ML	Study aim	Findings
year	Location	Data base(s)	witthouology	approach	Study ann	Findings
Harbrecht et al.,	Germany	The data used were	The study involved	Descriptive statistics and	To document and analyse the injury	The study found that most injuries
2022		observational data on E-	real-world data	chi-square tests were	patterns of E-scooter-related	were to the upper and lower
		scooter-related accidents		used for data analysis.	accidents over one year	extremities and craniofacial areas,
		treated at the trauma centre				with no fatalities reported.
Bekhit et al., 2020	New	Accident Compensation	Just analysis of	Retrospective review and	To describe the number and types	770 e-scooter injuries identified; 246
	Zealand	Corporation (ACC) claims	crash/medical	descriptive statistic	of injuries from e-scooter use and	hospital presentations; total cost of
		data	database(s)		determine the financial burden of	injuries was \$1,273,058 NZD
					injuries	

Suominen et al.,	Finland	The data used were	Real-world data	Descriptive analyses	Identify modifiable risk factors for	The study found high rates of alcohol
2022		retrospective cohort data	analysis of crash		electric scooter-related traumatic	intoxication (71%) and low helmet
		from patient charts, focusing	and medical		brain injuries, hypothesizing low	usage (3.8%) among patients. Most
		on accident data related to e-	databases		helmet usage and high alcohol	accidents occurred late at night, with a
		scooter injuries			intoxication rates.	significant increase in the incidence of
						injuries over the study period.
Dela Cruz et al.,	United	Retrospective review of	Real-world data	Descriptive analyses	Identify patterns and severity of	The study found 105 injuries in 83
2022	Kingdom	orthopaedic referrals related	from medical	were performed,	orthopaedic injuries related to e-	patients, predominantly fractures, with
		to e-scooter use	records and	reporting absolute	scooter use.	a high incidence of upper limb injuries
			orthopaedic	numbers and percentages		and low helmet use among riders.
			referrals			
			Teleffulb			
E-Scooter Crash Tre	ends and Fata	alities	Telefitais			
E-Scooter Crash Tre				Statistical/ML	C. 1 .	Tr. P.
	ends and Fata	Data base(s)	Methodology	Statistical/ML approach	Study aim	Findings
Authors/					Study aim Describe e-scooter injuries and	Findings The study found 1,354 e-scooter
Authors/ Year	Location	Data base(s)	Methodology	approach	<u> </u>	
Authors/ Year Ioannides et al.,	Location United	Data base(s) The data used were clinical	Methodology Real-world	approach Natural language	Describe e-scooter injuries and	The study found 1,354 e-scooter
Authors/ Year Ioannides et al.,	Location United	Data base(s) The data used were clinical	Methodology Real-world analysis of medical	approachNaturallanguageprocessing(NLP)	Describe e-scooter injuries and estimate the rate of injury per e-	The study found 1,354 e-scooter injuries, with an estimated injury rate
Authors/ Year Ioannides et al.,	Location United	Data base(s) The data used were clinical	Methodology Real-world analysis of medical	approachNaturallanguageprocessing(NLP)	Describe e-scooter injuries and estimate the rate of injury per e-	The study found 1,354 e-scooter injuries, with an estimated injury rate of 115 injuries per million e-scooter
Authors/ Year Ioannides et al., 2022	Location United States	Data base(s) The data used were clinical notes	Methodology Real-world analysis of medical databases	natural language processing (NLP) techniques	Describe e-scooter injuries and estimate the rate of injury per e-scooter trip.	The study found 1,354 e-scooter injuries, with an estimated injury rate of 115 injuries per million e-scooter trips.
Authors/ Year Ioannides et al., 2022	Location United States United	Data base(s) The data used were clinical notes	Methodology Real-world analysis of medical databases Just analysis of	Natural language processing (NLP) techniques Logistic regression	Describe e-scooter injuries and estimate the rate of injury per e-scooter trip. To identify risk factors for	The study found 1,354 e-scooter injuries, with an estimated injury rate of 115 injuries per million e-scooter trips. Craniomaxillofacial trauma occurred
Authors/ Year Ioannides et al., 2022	Location United States United	Data base(s) The data used were clinical notes	Methodology Real-world analysis of medical databases Just analysis of crash/medical	Natural language processing (NLP) techniques Logistic regression	Describe e-scooter injuries and estimate the rate of injury per e-scooter trip. To identify risk factors for craniomaxillofacial injuries in	The study found 1,354 e-scooter injuries, with an estimated injury rate of 115 injuries per million e-scooter trips. Craniomaxillofacial trauma occurred in 23% of cases; intoxication was a

3.13 Gaze behaviour

The safe operation of micromobility systems requires understanding how riders perceive their environment visually. Mobile eye-tracking technology has gained increased usage in scientific studies to study gaze patterns and attention behaviours among cyclists and, more recently, among e-scooter users. The following subsection presents findings from recent studies about visual attention and its connection to hazard perception, mental workload, and infrastructure context. Field-based research reveals that e-scooter riders have unique eye movements that differ from both pedestrian and cycling activities. Mobile eye tracker data shows e-scooter users focus their gaze 39-43% on the road ahead and 35-38% on other road users because they need to scan for potential conflicts at higher speeds (Pashkevich et al., 2022). Research shows dedicated cycle lanes promote consistent gaze patterns and fewer head movements, improving safety outcomes (Kegalle et al., 2025). Research on cycling provides important parallel findings. Systematic reviews demonstrate that intersections require a high visual workload because they cause gaze variability to increase and fixation durations to lengthen due to more complex decision-making (Kchour et al., 2025, Ma et al., 2024). The research analyzes cognitive processing levels, perceived stress, attention shifts, as well as fixation duration, and scan paths (Kchour et al., 2025, Ma et al., 2024). The way people group together determines their patterns of eye movements. During group bicycle rides, cyclists focus primarily on group members instead of traffic elements or signs. Hence, their fixations on traffic signs become shorter, making their steering movements more variable (Li et al., 2025). The same behaviour patterns could potentially exist among e-scooter users who ride in informal groups.

Simulation research confirms that gaze patterns remain constant throughout different environmental contexts. The study verified that fixations at crossings remained stable at 4.3% during real-world and simulated cycling tests, thus demonstrating that these zones receive insufficient attention despite their dangerous nature (Acerra et al., 2023). The visual actions of drivers become significant when they perform turns at intersections. Research shows that wing mirror checks before turning across cycle lanes are completely absent in 83% of drivers, creating

serious safety hazards for cyclists and e-scooter users (Abbasi et al., 2025). ADAS systems that integrate these findings could help develop safer interactions between drivers and vulnerable road users. Natural observations of e-scooter users in pedestrian-rich areas reveal how their visual attention patterns interact with their ability to avoid conflicts. The observation of e-scooterists shows how they modify their visual perspective and speed to maintain safe co-movement in public spaces (Lloyd, 2023). Research demonstrates two essential findings about e-scooter operations: (1) E-scooter riders need to dedicate extensive attention to their environment when using mixed-use areas; (2) The design of infrastructure determines both visual attention patterns and how people experience workload levels micromobility systems.

4 DISCUSSION AND CONCLUSION

The research provides a systematic review of recent studies about e-scooter safety issues in urban areas. The available research data remains fragmented particularly regarding rider conduct and various elements that influence total e-scooter safety. The emergence of e-scooters, primarily marketed as a recreational activity rather than a practical mode of transit, has been sudden, catching society unprepared and prompting inquiries into e-scooter safe use. This paper offers a comprehensive understanding of safety factors related to e-scooter use, including escooter rider behaviour and broader factors such as device-related features, policies, and road infrastructure. This review addresses shortcomings in prior studies by providing a broader global scope of e-scooter safety concerns. This approach expands the discussion on each reviewed theme and ensures a more comprehensive understanding of e scooter safety and related issues. This study underscores the significance of conducting in-depth investigations of e-scooter interaction and incident data to gain a better understanding of safety risks associated with escooters and to develop targeted interventions. Such data should encompass accident scenarios, injury patterns, socio-demographic factors related to incidents, and how e-scooters interact with pedestrians and other devices. The study also highlights specific areas of research focus, pinpointing safety concerns that warrant further investigation, including helmet use, substance use, speeding, inexperienced riding, and underage riding. The study strongly emphasised that the shaping of safety culture is influenced by rider education programs and policy enforcement. Authorities should ensure that definitions and classifications of micro-mobility in regulatory frameworks support effective enforcement and address safety needs, with particular attention to speed and mass as key factors in crash severity. Proactively maintaining and adapting existing road infrastructure to safely accommodate e-scooters contributes significantly to safer rides. While efforts have been undertaken by stakeholders to address the interconnected risk factors through industry-leading technology, the persistent safety challenges within this domain underscore the necessity for further investigation. Effective interventions could benefit from

being customised to account for time, location, and user specific factors rather than using a onesize-fits-all approach.

Research now focuses on visual attention and gaze behaviour as additional factors which affect rider safety in addition to behavioural and infrastructural risks. Research using eye-tracking technology shows that e-scooter users tend to focus their attention on the straight path in front of them while they pay less attention to surrounding dangers particularly at crossroads and busy visual areas. The combination of group riding with high-traffic areas and ambiguous infrastructure layouts creates additional cognitive demands that result in missed cues and delayed hazard response. The research demonstrates that designing rider training programs and infrastructure should focus on reducing the mental load to enable better attention allocation. Future research that incorporates eye-tracking methods will deliver essential information about rider perception and decision-making which will create scientific foundations for specific safety solutions.

4.1 Research Gaps and Future Directions

The review offers an extensive analysis of e-scooter safety issues while there need to be some further explorations. The existing literature lacks systematic investigations which analyze how rider behaviour interacts with infrastructure quality and policy regulation together as a single scenario. The majority of current research investigates individual safety factors independently which exclude to understand their combined impact on safety results. The research about gaze behaviour and visual attention has recently gained attention but the existing studies in this field remain limited in their scope and scale. The existing research includes some studies which use small sample groups and simulated testing environments. Future research needs to implement eye-tracking technology with behavioural and physiological monitoring for extended periods in real-world settings to better understand how attention patterns change in urban environments.

The research needs to focus more on studying diverse users. The factors of age, gender, prior experience, and riding frequency strongly affect risk perception and safety performance,

yet researchers frequently ignore these elements. Knowledge about individual user characteristics would enable developers to create safety interventions and adaptive infrastructure solutions. The current research lacks regional data, particularly from places where e-scooter usage is on the rise. Studies that compare cities and countries with different regulations and infrastructure designs would reveal optimal practices which could direct policy regulations. Research has not fully investigated how environmental factors such as night-time visibility weather conditions and surface types affect both rider safety and gaze patterns. Future research needs to study these variables to develop safer and more inclusive micro-mobility systems. The current research lacks regional data particularly from places where e-scooter usage is on the rise. Studies that compare cities and countries with different regulations and infrastructure designs would reveal optimal practices which could direct policy regulations. Research has not fully investigated how environmental factors such as night-time visibility and weather conditions and surface types affect both rider safety and gaze patterns. Future research needs to study these variables to develop safer and more inclusive micro-mobility systems.

4.2 Limitations

The research study used the PRISMA framework to perform database searches in Google Scholar, Scopus, Web of Science, EBSCO, ProQuest, TRID, APA, and PMS. The researchers spent many hours selecting precise keywords that matched the research objectives by giving priority to e-scooter rider safety. The authors typically specify their keywords, yet researchers may have failed to identify relevant papers that use different terminology.

The research studies organized their safety concerns into two main categories, which included risky rider behaviour and external risks that surpassed rider control. The research studies discovered that, three primary safety issues related to e-scooter design problems and lack of policy frameworks, and inadequate road infrastructure. Our analysis resulted in six distinct clusters that addressed e-scooter rider safety concerns.

The search for peer-reviewed papers that examine e-scooter rider gaze behaviour produced only a few relevant studies despite our efforts to include strong and relevant research. The

limited research on e-scooter riders requires us to draw insights from cyclist studies although these findings may not perfectly translate to e-scooters. The findings present challenges for comparison because different research methods including eye-tracking tools and route types and data handling procedures create inconsistencies between the results.

REFERENCES

Cubells, J., Miralles-Guasch, C., & Marquet, O. (2023). E-scooter and bike-share route choice and detours: Modelling the influence of built environment and sociodemographic factors. Journal of Transport Geography, 111, Article 103664. https://doi.org/10.1016/j.jtrangeo.2023.103664

Gao, D., & Zhang, X. (2024). Injury severity analysis of single-vehicle and two-vehicle crashes with electric scooters: A random parameters approach with heterogeneity in means and variances. Accident analysis and prevention, 195, 107408. https://doi.org/10.1016/j.aap.2023.107408

Useche, S. A., Gonzalez-Marin, A., Faus, M., & Alonso, F. (2022a). Environmentally friendly, but behaviorally complex? A systematic review of e-scooter riders' psychosocial risk features. PLoS One1, 17(5), e0268960.

Yang, H., Ma, Q., Wang, Z., Cai, Q., Xie, K., & Yang, D. (2020). Safety of micro-mobility: Analysis of E-Scooter crashes by mining news reports. Accident; Analysis and Prevention, 143, Article 105608. https://doi.org/10.1016/j.aap.2020.105608

Kopplin, C. S., Brand, B. M., & Reichenberger, Y. (2021). Consumer acceptance of shared escooters for urban and short-distance mobility. Transportation Research Part D: Transport and Environment, 91. https://doi.org/10.1016/j.trd.2020.102680

Zou, Z., Younes, H., Erdo gan, S., & Wu, J. (2020). Exploratory Analysis of Real-Time E-Scooter Trip Data in Washington, D.C. Transportation Research Record: Journal of the Transportation Research Board, 2674(8), 285–299. https://doi.org/10.1177/0361198120919760

Traynor, M. D., Jr., Lipsitz, S., Schroeder, T. J., Zielinski, M. D., Rivera, M., Hernandez, M. C., & Stephens, D. J. (2022). Association of scooter-related injury and hospitalization with electronic scooter sharing systems in the United States. American Journal of Surgery, 223(4), 780–786. https://doi.org/10.1016/j. amjsurg.2021.06.006

Haworth, N., Kai, N. S. Y., & Schramm, A. (2024). Understanding nonuse of mandatory e-scooter helmets. Traffic Injury Prevention. https://doi.org/10.1080/15389588.2024.2335677

Kazemzadeh, K., Haghani, M., & Sprei, F. (2023). Electric scooter safety: An integrative review of evidence from transport and medical research domains. Sustainable Cities and Society, 89. https://doi.org/10.1016/j.scs.2022.104313

Ventsislavova, P., Baguley, T., Antonio, J., & Byrne, D. (2024). E-scooters: Still the new kid on the transport block. Assessing e-scooter legislation knowledge and illegal riding behaviour. Accident Analysis and Prevention, 195, 107390. https://doi.org/10.1016/j.aap.2023.107390

Janikian, G. S., Caird, J. K., Hagel, B., & Reay, G. (2024). A scoping review of E-scooter safety: Delightful urban slalom or injury epidemic? Transportation research Part F, Traffic Psychology and Behaviour, 101, 33–58. https://doi.org/10.1016/j.trf.2023.12.015

Tischler, E. H., Krasnyanskiy, B., Kong, R. M., Tracey, O., Tsai, S. H. L., & Suneja, N. (2023). Escooter use continues to rev up fracture diagnoses and hospital admissions compared to other modes of transportation. Journal of Clinical Orthopaedics & Trauma, 40, Article 102164. https://doi.org/10.1016/j.jcot.2023.102164

Niemann, M., Braun, K. F., Otto, E., Tiefenbrunner, M., Wüster, J., St"ockle, U., ... Graef, F. (2023). Dangers of e-mobility: A systematic review and meta-analysis of sustained injury patterns and injury severity. Safety Science, 167, Article 106283. https://doi.org/10.1016/j.ssci.2023.106283

Serra, G. F., Fernandes, F. A. O., Noronha, E., & de Sousa, R. J. A. (2021). Head protection in electric micromobility: A critical review, recommendations, and future trends. Accident; Analysis and Prevention, 163, Article 106430. https://doi.org/10.1016/j.aap.2021.106430

Notopoulus, K. (2018, August 20). Broken bones and missing teeth: Scooter injuries are becoming common at hospitals. Buzzfeednews. https://www.buzzfeednews.com/article/katienotopoulos/e-scooter-injuries-are-becoming-common-in-emergency-rooms.

National Association of City Transportation Officials (NACTO) (2019, September). Guidelines for regulating shared micromobility (v. 2). New York: NACTO. https://nacto.org/sharedmicromobilityguidelines/.

Dhillon, N. K., Juillard, C., Barmparas, G., Lin, T.-L., Kim, D. Y., Turay, D., Seibold, A. R., Kaminski, S., Duncan, T. K., Diaz, G., Saad, S., Hanpeter, D., Benjamin, E. R., Tillou, A., Demetriades, D., Inaba, K., & Ley, E. J. (2020). Electric scooter injury in Southern California trauma centers. Journal of the American College of Surgeons, 231, 133–138. https://doi.org/10.1016/j.jamcollsurg.2020.02.047

Bekhit, M. N. Z., Le Fevre, J., & Bergin, C. J. (2020). Regional healthcare costs and burden of injury associated with electric scooters. Injury, 51(2), 271–277. https://doi.org/10.1016/j.injury.2019.10.026

Sikka, N., Vila, C., Stratton, M., Ghassemi, M., & Pourmand, A. (2019). Sharing the sidewalk: A case of e-scooter related pedestrian injury. The American Journal of Emergency Medicine, 37(9), 1087. https://doi.org/10.1016/j.ajem.2019.06.017

Kamphuis, K., & Schagen, I. v. (2020). E-scooters in Europe: legal status, usage and safety, Results of a survey in FERSI countries, FERSI paper, Retrieved from https://fersi. org/.

Leyendecker, J., Hackl, M., Leschinger, T., Bredow, J., Krane, F., Eysel, P., ... Harbrecht, A. (2023). Lessons learned? Increasing injury severity of electric-scooter accidents over a period of one year: A monocentric follow-up study at a level 1 trauma center. European Journal of Orthopaedic Surgery and Traumatology, 1–6. https://doi.org/10.1007/s00590-023-03583-1

Azimian, A., & Jiao, J. (2022). Modeling factors contributing to dockless e-scooter injury accidents in Austin, Texas. Traffic Injury Prevention, 23(2), 107–111. https://doi.org/10.1080/15389588.2022.2030057

ITF. (2020). The International Transport Forum, Safer Micromobility. Retrieved from https://www.itf-oecd.org/safe-micromobility.

Sexton, E. G. P., Harmon, K. J., Sanders, R. L., Shah, N. R., Bryson, M., Brown, C. T., & Cherry, C. R. (2023). Shared e-scooter rider safety behaviour and injury outcomes: A review of studies in the United States. Transport Reviews, 1–23. https://doi.org/10.1080/01441647.2023.2219838

ITF. (2024). International Transport Forum policy paper, Safer Micromobility. Retrieved from https://www.oecd-ilibrary.org/transport/safer-micromobility_0d2e0dd5 en. doi: 10.1787/24108871.

Useche, S. A., O'Hern, S., Gonzalez-Marin, A., Gene-Morales, J., Alonso, F., & Stephens, A. N. (2022). Unsafety on two wheels, or social prejudice? Proxying behavioral reports on bicycle and e-scooter riding safety— A mixed-methods study. Transportation Research Part F: Traffic Psychology and Behaviour, 89, 168–182. https://doi.org/10.1016/j.trf.2022.06.015

Moftakhar, T., Wanzel, M., Vojcsik, A., Kralinger, F., Mousavi, M., Hajdu, S., & Starlinger, J. (2020). Incidence and severity of electric scooter related injuries after introduction of an urban rental programme in Vienna: a retrospective multicentre study. Archives of orthopaedic and trauma surgery, 1–7.

Portland Bureau of Transportation. (2020). City of Portland bureau of transportation E-scooter findings report. Portland Bureau of Transportation.

Young, M. (2019). Baltimore city dockless vehicle pilot program evaluation report. Baltimore City Department of Transportation

Currans, K. M., Iroz-Elardo, N., Ewing, R., Choi, D., Siracuse, B., Lyons, T., & Griffee, J. (2022). Scooting to a NewErainactive transportation: Examining the Use and safety of E-scooters. National Institute for Transportation and Communities (NITC).

Raubenheimer, K., Dodd, J., Jarmin, M. J., Sarvepalli, R., Fatovich, D. M., & Weber, D. G. (2023). Western Australian State Trauma Registry analysis of incidence and injury patterns associated with e-Scooter injuries: 5-year retrospective case series. ANZ Journal of Surgery. https://doi.org/10.1111/ans.18538

Queensland Government. (2023). Rules for personal mobility devices, October 2023. Retrieved from https://www.qld.gov.au/transport/safety/rules/wheeled devices/personal-mobility-devices.

Murros, O., Puolakkainen, T., Abio, A., Thoren, H., & Snall, J. (2023). Urban drinking and driving: Comparison of electric scooter and bicycle related accidents in facial fracture patients. Medicina Oral, Patología Oral y Cirugía Bucal, 28(3), e238–e246. https://doi.org/10.4317/medoral.25662

Shiffler, K., Mancini, K., Wilson, M., Huang, A., Mejia, E., & Yip, F. K. (2021). Intoxication is a significant risk factor for severe craniomaxillofacial injuries in standing electric scooter accidents. Journal of Oral and Maxillofacial Surgery. https://doi.org/10.1016/j.joms.2020.09.026

Kobayashi, L. M., Williams, E., Brown, C. V., Emigh, B. J., Bansal, V., Badiee, J., Checchi, K. D., Castillo, E. M., & Doucet, J. (2019). The e-merging e-pidemic of e- scooters. Trauma Surgery & Acute Care Open, 4, e000337.

Suominen, E. N., Sajanti, A. J., Silver, E. A., Koivunen, V., Bondfolk, A. S., Koskimake, J., & Saarinen, A. J. (2022). Alcohol intoxication and lack of helmet use are common in electric scooter-related traumatic brain injuries: A consecutive patient series from a tertiary university hospital. Acta Neurochirurgica, 164, 643–653. https://doi.org/10.1007/s00701-021-05098-2

Zube, K., Dalrup, T., Lau, M., Maatz, R., Tank, A., Steiner, I., Schwender, H., & Hartung, B. (2022). E-scooter driving under the influence of alcohol—A real driving f itness study. International Journal of Legal Medicine. https://doi.org/10.1007/s00414-022-02792-3

Comer, A. R., Apathy, N., Waite, C., Bestmann, A., Bradshaw, J., Burchfield, E., Harmon, B., Legg, R., Meyer, S., O'Brien, P., Sabec, M., Sayeed, J., Weaver, A., D'Cruz, L., Bartlett, A., Marchand, M., Zepeda, I., Endri, K., Finnell, J. T., Grannis, S., Siverman, R. D., & Embi, P. J. (2020). Electric scooters (e-scooters): Assessing the threat to public health and safety. Chronicles of Health. Impact Assessment, 5(1), 1–11. https://doi.org/10.18060/24194

Oksanen, E., Turunen, A., & Thoren, H. (2020). Assessment of craniomaxillofacial injuries in Turku, Finland, in 2019. Journal of Oral and Maxillofacial Surgery, 78, 2273–2278. https://doi.org/10.1016/j.joms.2020.05.038

Governors Highway Safety Association (2020, August). Understanding and tackling micromobility: Transportation's new disruptor. Washington, D.C.: GHSA.

Nisson, P. L., & Chu, R. (2020). Electric scooters: Case reports indicate a growing public health concern. American Journal of Public Health, 110(2), 177–179. https://doi.org/10.2105/AJPH.2019.305499

Anderson, B., Rupp, J. D., Moran, T. P., Hudak, L. A., & Wu, D. T. (2021). The effect of nighttime rental restrictions on e-scooter injuries at a large urban tertiary care center. International Journal of Environmental Research and Public Health, 18, 10281. https://doi.org/10.3390/ijerph181910281

Blomberg, S. N. F., Rosenkrantz, O. C. M., Lippert, F., & Christensen, H. C. (2019). Injury from electric scooters in Copenhagen: A retrospective cohort study. BMJ Open, 9(12), 1–8. https://doi.org/10.1136/bmjopen-2019-033988

Trivedi, B., Kesterke, M. J., Bhattacharjee, R., Weber, W., Mynar, K., & Reddy, L. V. (2019). Craniofacial Injuries Seen With the Introduction of Bicycle-Share Electric Scooters in an Urban Setting. Journal of Oral and Maxillofacial Surgery, 77(11), 2292–2297. https://doi.org/10.1016/j.joms.2019.07.014

Trivedi, T. K., Liu, C., Antonio, A. L. M., Wheaton, N., Kreger, V., Yap, A., ... Elmore, J. G. (2019). Injuries Associated With Standing Electric Scooter Use. JAMA Network Open, 2(1), e187381.

Cicchino, J. B., Kulie, P. E., & McCarthy, M. L. (2021a). Injuries related to electric scooter and bicycle use in a Washington, DC, emergency department. Traffic Injury Prevention, 22(5), 401–406. https://doi.org/10.1080/15389588.2021.1913280

Stormann, P., Klug, A., Nau, C., Verboket, R. D., Leiblein, M., Muller, D., ... Lustenberger, T. (2020). Characteristics and Injury Patterns in Electric-Scooter Related Accidents-A Prospective Two-Center Report from Germany. Journal of Clinical Medicine, 9(5). https://doi.org/10.3390/jcm9051569

Kayaalp, M. E., Kilic, N. C., Kandemir, I., Bayhan, M., & Eceviz, E. (2023). Electric scooter-associated orthopedic injuries cause long absence from work, regret and are emerging as a major cause of hip fractures in young individuals: A comprehensive study from a regional trauma center in a densely populated urban setting. European Journal of Trauma and Emergency Surgery. https://doi.org/10.1007/s00068-023-02322-9

Lime (2023). Retrieved from https://www.li.me/.

Brunner, P., Locken, A., Denk, F., Kates, R., & Huber, W. (2020). Analysis of experimental data on dynamics and behavior of e-scooter riders and applications to the impact of automated driving functions on urban road safety. IEEE Intelligent Vehicles Symposium (IV), 2020, 219–225. https://doi.org/10.1109/IV47402.2020.9304835

Brauner, T., Heumann, M., Kraschewski, T., Prahlow, O., Rehse, J., Kiehne, C., & Breitner, M. H. (2022). Web content mining analysis of e-scooter crash causes and implications in Germany. Accident; Analysis and Prevention, 178, Article 106833. https://doi.org/10.1016/j.aap.2022.106833

Bird (2023). Retrieved from https://www.bird.co/

Flaherty, D. J., Morgan, C., Dela Cruz, N. J. M., Morgan, R. V., Sarraf, K. M., Sinnett, T., & Roche, A. (2022). Foot and ankle injuries related to the use of E-scooters- A case series and a review of literature. Foot (Edinburgh, Scotland), 51, Article 101873. https://doi.org/10.1016/j.foot.2021.101873

Huemer, A. K., Banach, E., Bolton, N., Helweg, S., Koch, A., & Martin, T. (2022). Secondary task engagement, risk-taking, and safety-related equipment use in German bicycle and e-scooter riders—An observation. Accident; Analysis and Prevention, 172, Article 106685.

Huemer, A. K., Gercek, S., & Vollrath, M. (2019). Secondary task engagement in German cyclists—An observational study. Safety Science, 120, 290–298. https://doi.org/10.1016/j.ssci.2019.07.016

Arellano, J.F. & Fang, K. (2019), December. Sunday drivers, or too fast and too furious? Transport Findings, 1–9. 10.32866/001c.11210.

Austin Public Health (2019). Dockless electric scooter-related injuries study — Austin, Texas, September—November 2018.

https://austintexas.gov/sites/default/files/files/Health/Web Dockless Electric Scooter Related_Injury_Study_final_version_EDSU_5.14.19.pdf.

Gioldasis, C., Christoforou, Z., & Seidowsky, R. (2021). Risk-taking behaviors of e-scooter users: A survey of Paris. Accident; Analysis and Prevention, 163, Article 106427. https://doi.org/10.1016/j.aap.2021.106427

Tark, J. (2022). Micromobility product-related deaths, injuries, and hazard patterns: 2017–2021. Bethesda, Maryland: U.S. Consumer Product Safety Commission.

Uluk, D., Lindner, T., Dahne, M., Bickelmayer, J. W., Beyer, K., Slagman, A., ... Gerlach, U. A. (2022). E-scooter incidents in Berlin: An evaluation of risk factors and injury patterns. Emergency Medicine Journal, 39(4), 295–300. https://doi.org/10.1136/emermed-2020-210268

Sucha, M., Drimlova, E., Recka, K., Haworth, N., Karlsen, K., Fyhri, A., ... Slootmans, F. (2023). Escooter riders and pedestrians: Attitudes and interactions in five countries. Heliyon, 9(4), e15449.

Pourfalatoun, S., Ahmed, J., & Miller, E. E. (2023). Shared Electric Scooter Users and Non-Users: Perceptions on Safety, Adoption and Risk. Sustainability, 15(11). doi: 10.3390/su15119045.

Neuroth, L. M., Humphries, K. D., Wing, J. J., Smith, G. A., & Zhu, M. (2022). Motor vehicle-related electric scooter injuries in the US: A descriptive analysis of NEISS data. The American Journal of Emergency Medicine, 55, 1–5. https://doi.org/10.1016/j.ajem.2022.02.004

Toofany, M., Mohsenian, S., Shum, L. K., Chan, H., & Brubacher, J. R. (2021). Injury patterns and circumstances associated with electric scooter collisions: A scoping review. Injury Prevention, 27(5), 490–499. https://doi.org/10.1136/injuryprev-2020-044085

Tian, D., Ryan, A. D., Craig, C. M., Sievert, K., & Morris, N. L. (2022). Characteristics and risk factors for electric scooter-related crashes and injury crashes among scooter riders: A two-phase survey study. International Journal of Environmental Research and Public Health, 19(16). https://doi.org/10.3390/ijerph191610129

Lanza, K., Burford, K., & Ganzar, L. A. (2022). Who travels where: Behavior of pedestrians and micromobility users on transportation infrastructure. Journal of Transport Geography, 98. https://doi.org/10.1016/j.jtrangeo.2021.103269

Blazanin, G., Mondal, A., Asmussen, K. E., & Bhat, C. R. (2022). E-scooter sharing and bikesharing systems: An individual-level analysis of factors affecting first-use and use frequency. Transportation Research Part C: Emerging Technologies, 135. https://doi.org/10.1016/j.trc.2021.103515

Laa, B., & Leth, U. (2020). Survey of E-scooter users in Vienna: Who they are and how they ride. Journal of Transport Geography, 89. https://doi.org/10.1016/j.jtrangeo.2020.102874

P' erez-Zuriaga, A. M., Dols, J., Nespereira, M., García, A., & Sajurjo-de-No, A. (2023). Analysis of the consequences of car to micromobility user side impact crashes. Journal of Safety Research, 87, 168–175. https://doi.org/10.1016/j.jsr.2023.09.014

Anke, J., Ringhand, M., Petzoldt, T., & Gehlert, T. (2023). Micro-mobility and road safety: Why do e-scooter riders use the sidewalk? Evidence from a German field study. European Transport Research Review, 15(1), 29. https://doi.org/10.1186/s12544-023-00607-z

Hardt, C., & Bogenberger, K. (2019). Usage of e-scooters in urban environments. Transportation Research Procedia, 37, 155–162. https://doi.org/10.1016/j. trpro.2018.12.178

James, O., Swiderski, J., Hicks, J., Teoman, D., & Buehler, R. (2019). Pedestrians and E-Scooters: An Initial Look at E-Scooter Parking and Perceptions by Riders and Non-Riders. Sustainability, 11(20). doi: 10.3390/su11205591.

Wallius, E., Thibault, M., Apperley, T., & Hamari, J. (2021). Gamifying the city: E-scooters and the critical tensions of playful urban mobility. Mobilities, 17(1), 85–101. https://doi.org/10.1080/17450101.2021.1985382

Anke, J., Ringhand, M., & Petzoldt, T. (2024). Different but also alike? Ingroup-outgroup phenomena among cyclists and e-scooter riders. Journal of Safety Research. https://doi.org/10.1016/j.jsr.2024.01.008

Dozza, M., Violin, A., & Rasch, A. (2022). A data-driven framework for the safe integration of micro-mobility into the transport system: Comparing bicycles and e scooters in field trials. Journal of Safety Research, 81, 67–77. https://doi.org/10.1016/j.jsr.2022.01.007

Harbrecht, A., Hackl, M., Leschinger, T., Uschok, S., Wegmann, K., Eysel, P., & Muller, L. P. (2022). What to expect? Injury patterns of Electric-Scooter accidents over a period of one year- A prospective monocentric study at a Level 1 Trauma Center. European Journal of Orthopaedic Surgery and Traumatology, 32(4), 641–647. https://doi.org/10.1007/s00590-021-03014-z

Barker, M., Pepper, T., Dua, R., & Fan, K. (2022). Electric scooters: convenient transport or ED headache? Br J Oral Maxillofac Surg, 60(2), 199-200. doi: 10.1016/j. bjoms.2020.09.038.

Pepper, T., Barker, M., Smyth, D., Kingham, M., Dua, R., & Fan, K. (2022). Electric scooters: A quick way to get to the emergency department? British Dental Journal, 232(8), 535–537. https://doi.org/10.1038/s41415-022-4153-6

Crowe, B. S., & Elkbuli, A. (2021). Electric scooter-related injuries: The desperate need for regulation. The American Journal of Emergency Medicine, 47, 303–304. https://doi.org/10.1016/j.ajem.2021.01.014

Allem, J. P., & Majmundar, A. (2019). Are electric scooters promoted on social media with safety in mind? A case study on Bird's Instagram. Preventive Medical Reports, 13, 62–63. https://doi.org/10.1016/j.pmedr.2018.11.013

Phipps, D. J., & Hamilton, K. (2024). Predicting Undergraduates' willingness to engage in dangerous e-scooter use behaviors. Transportation Research Part F: Traffic Psychology and Behaviour, 103, 500–511. https://doi.org/10.1016/j.trf.2024.05.003

Salas-Ni[~] no, L. (2022). Analysis of Current E-Scooter Safety Regulation in a Large U.S. City Using Epidemiological Components as a Framework. Transportation Research Record: Journal of the Transportation Research Board. doi: 10.1177/03611981221088771.

Beck, S., Barker, L., Chan, A., & Stanbridge, S. (2020). Emergency department impact following the introduction of an electric scooter sharing service. Emergency Medicine Australasia, 32(3), 409–415. https://doi.org/10.1111/1742-6723.13419

Demir, N., Dokur, M., Agdo gan, O., Koc, S., Karada g, M., & Dokur, I. F. (2023). Electric scooters as a silent source of danger in increasing use among young people: A single-center indepth accident analysis. Turkish Journal of Trauma & Emergency Surgery / Ulusal Travma ve Acil Cerrahi Dergisi, 29(5), 596–604. https://doi.org/10.14744/tjtes.2023.15507

Aulino, G., Polacco, M., Fattoruso, V., & Cittadini, F. (2022). A cranio-encephalic trauma due to electric-scooter accident: Could the wearing of a helmet reduce this risk? Forensic Science, Medicine, and Pathology. https://doi.org/10.1007/s12024-022-00477-2

Che, M., Lum, K. M., & Wong, Y. D. (2020). Users' attitudes on electric scooter riding speed on shared footpath: A virtual reality study. International Journal of Sustainable Transportation. https://doi.org/10.1080/15568318.2020.1718252

Lavoie-Gagne, O., Siow, M., Harkin, W., Flores, A. R., Girard, P. J., Schwartz, A. K., & Kent, W. T. (2021). Characterization of electric scooter injuries over 27 months at an urban level 1 trauma center. The American Journal of Emergency Medicine, 45, 129–136. https://doi.org/10.1016/j.ajem.2021.02.019

Bodansky, D. M. S., Gach, M. W., Grant, M., Solari, M., Nebhani, N., Crouch-Smith, H., Cambell, M., Banks, J., & Cheung, G. (2022). Legislation of e-scooters in the U. K.: The injury rate and pattern is similar to those of bicycles in an inner city metropolitan area. Public Health, 206, 15–19. https://doi.org/10.1016/j. puhe.2022.02.016

Cohen, L. L., Geller, J. S., Yang, B. W., Allegra, P. R., & Dodds, S. D. (2022). Pediatric injuries related to electric scooter use: A national database review. J. Pediatric Orthopaedics B, 31, e241–e245. https://doi.org/10.1097/BPD.0000000000000879

Dela Cruz, N. J. M., Morgan, C., Morgan, R. V., Tanna, S., Talwar, C., Dattani, R., Sarraf, K. M., & Gibbons, C. E. R. (2022). Injury patterns of e-scooter-related orthopaedic trauma in central London: A multicentre study. Annals of the Royal College of Surgeons of England, 104, 187–194. https://doi.org/10.1308/rcsann.2021.0151

Ioannides, K. L. H., Wang, P.-C., Kowsari, K., Vu, V., Kojima, N., Clayton, D., Liu, C., Trivedi, T. K., Schriger, D. L., & Elmore, J. G. (2022). E-scooter related injuries: Using natural language processing to rapidly search 36 million medical notes. PLoS One1, 17(4), e0266097.

Field, C., & Jon, I. (2021). e-scooters: A new smart mobility option? The case of Brisbane, Australia. Planning Theory & Practice, 1–29.

Ma, Q., Yang, H., Ma, Y., Yang, D., Hu, X., & Xie, K. (2021a). Examining municipal guidelines for users of shared e-scooters in the United States. Transportation Research Part D: Transport and Environment, 92, Article 102710. https://doi.org/10.1016/j.trd.2021.102710

Ma, Q., Yang, H., Mayhue, A., Sun, Y., Huang, Z., & Ma, Y. (2021b). E-scooter safety: The riding risk analysis based on mobile sensing data. Accident Analysis & Prevention, 151, Article 105954.

Ma, Q. (2021). Data-driven operational and safety analysis of emerging shared electric scooter systems. Old Dominion University. https://doi.org/10.25777/fgfa-a749

Kim, J. Y., Lee, S. C., Lee, S., Ahn, K. O., & Park, J. O. (2021). Characteristics of injuries according to types of personal mobility devices in multicenter emergency department 2011 to 2017. Medicine, 100(6), e24642.

A. Pashkevich, T.E. Burghardt, S. Puławska-Obiedowska, M. Šucha, "Visual attention and speeds of pedestrians, cyclists, and electric scooter riders when using shared road — A field eye tracker experiment," *Case Studies on Transport Policy*, vol. 10, pp. 549–558, 2022. https://doi.org/10.1016/j.cstp.2022.01.015

H.N. Kegalle, D. Hettiachchi, J. Chan, M. Sanderson, and F.D. Salim, "Watch Out! E-scooter Coming Through!: Multimodal Sensing of Mixed Traffic Use and Conflicts Through Riders' Ego-centric Views," *Proc. ACM Interact. Mob. Wearable Ubiquitous Technol.*, vol. 9, no. 1, Article 8, Mar. 2025. https://doi.org/10.1145/3712284

- F. Kchour, S. Cafiso, and G. Pappalardo, "Understanding Cyclists' Visual Behavior Using Eye-Tracking Technology: A Systematic Review," *Sensors*, vol. 25, no. 1, Article 22, 2025. https://doi.org/10.3390/s25010022
- S. Ma, W. Zhang, R.B. Noland, and C.J. Andrews, "Eye tracking measures of bicyclists' behavior and perception: A systematic review," *Transportation Research Part F: Psychology and Behaviour*, vol. 107, pp. 52–68, 2024. https://doi.org/10.1016/j.trf.2024.08.026
- M. Li, Y. Zhang, T. Chen, H. Du, and K. Deng, "Group cycling in urban environments: Analyzing visual attention and riding performance for enhanced road safety," *Accident Analysis and Prevention*, vol. 209, Article 107804, 2025. https://doi.org/10.1016/j.aap.2024.107804

E.M. Acerra, M. Shoman, H. Imine, C. Brasile, C. Lantieri, and V. Vignali, "The Visual Behaviour of the Cyclist: Comparison between Simulated and Real Scenarios," *Infrastructures*, vol. 8, no. 5, Article 92, 2023. https://doi.org/10.3390/infrastructures8050092

J.A. Abbasi, A. Parsi, N. Ringelstein, P. Reilhac, E. Jones, and M. Glavin, "Enhancing Cyclist Safety Through Driver Gaze Analysis at Intersections With Cycle Lanes," *IEEE Transactions on Intelligent Transportation Systems*, vol. 26, no. 3, pp. 3175–3187, Mar. 2025. https://doi.org/10.1109/TITS.2025.3530872

M. Lloyd, "Problems on the pavement? A study of E-scooterists amongst co-movers," *Applied Mobilities*, vol. 8, no. 2, pp. 149–169, 2023. https://doi.org/10.1080/23800127.2023.2214751

Raubenheimer, K., Dodd, J., Jarmin, M. J., Sarvepalli, R., Fatovich, D. M., & Weber, D. G. (2023). Western Australian State Trauma Registry analysis of incidence and injury patterns associated with e-Scooter injuries: 5-year retrospective case series. ANZ Journal of Surgery. https://doi.org/10.1111/ans.18538

Williams, C., Bitter, C. C., Lorber, S., Overfelt, C. R., Zehfus, H., Spangler, A., ... Naunheim, R. S. (2022). Incidence of emergency department visits for electric rental scooters using detailed ridership data. The Western Journal of Emergency Medicine, 23(2), 174–182. https://doi.org/10.5811/westjem.2021.6.51101

Lyons, T., Choi, D.-A., Park, K., & Ameli, S. H. (2020). Safety and Nonoptimal Usage of a Protected Intersection for Bicycling and Walking: A Before-and-After Case Study in Salt Lake City, Utah. Sustainability, 12(21). https://doi.org/10.3390/su12219195

Seabrook, J. (2021, April 26). The e-scooters loved by Silicon Valley roll into New York. The New Yorker. https://www.newyorker.com/magazine/2021/04/26/the-e- scooters-loved-by-silicon-valley-roll-into-new-york

TABLE OF TABLES AND FIGURES

Tables	
Table 1. Review of Human Factors of E-scooter Rider Safety	13
Table 2. Review on Rider Distraction and Infrastructure-related Challenges	19
Table 3. Review of Policy-related Challenges	23
Table 4. Review on Pattern Injury	29
Figures	
Figure 1. PRISMA flow diagram for systematic review of e-scooter human behaviour	7

ESCURB

